精英家教网 > 高中数学 > 题目详情

【题目】我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,去掉所有为1的项,依次构成2334645101056…,则此数列的前50项和为(

A.2025B.3052C.3053D.3049

【答案】D

【解析】

去除所有为1的项后,根据图可知前n行共有个数,从而得到前10行共55个数,然后用前10行的和减去后五项,即可得到此数列的前50项和.

:去除所有为1的项后,由图可知前n行共有个数,

n=10,,即前10行共有55个数.

因为第n-1行的和为,

所以前10行的和为.

因为第10行最后5个数为,,,,,

所以此数列的前50项的和为4072-11-55-165-330-462=3049.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C,则( )

A.双曲线C的离心率等于半焦距的长

B.双曲线与双曲线C有相同的渐近线

C.双曲线C的一条准线被圆x2y21截得的弦长为

D.直线ykxb(kbR)与双曲线C的公共点个数只可能为012

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在以为圆心,6为半径的圆内有一点,点为圆上的任意一点,线段的垂直平分线和半径交于点.

1)判断点的轨迹是什么曲线,并求其方程;

2)记点的轨迹为曲线,过点的直线与曲线交于两点,求的最大值;

3)在圆上的任取一点,作曲线的两条切线,切点分别为,试判断是否垂直,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车在行驶中,由于惯性,刹车后还要继续向前滑行一段距离才能停止,一般称这段距离为刹车距离”.刹车距离是分析交通事故的一个重要依据.在一个限速为的弯道上,甲、乙两辆汽车相向而行,突然发现有危险情况,同时紧急刹车,但还是发生了交通事故.事后现场勘查,测得甲车的刹车距离略超过,乙车的刹车距离略超过.已知甲、乙两种车型的刹车距离与车速之间的关系分别为:.根据以上信息判断:在这起交通事故中,应负主要责任的可能是_______________车,理由是__________________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收人并制成如下频率分布直方图:

(1)根据频率分布直方图,估计50位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

(2)由频率分布直方图,可以认为该贫困地区农民年收入服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得.利用该正态分布,求:

(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况, 扶贫办随机走访了1000位农民。若每个农民的年收人相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附:参考数据与公式,若,则①;②;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只昆虫的产卵数与温度有关,现收集了6组观测数据与下表中.由散点图可以发现样本点分布在某一指数函数曲线的周围.

温度

21

23

25

27

29

31

产卵数/

7

11

21

24

66

114

,经计算有:

26

40.5

19.50

6928

526.60

70

1)试建立关于的回归直线方程并写出关于的回归方程.

2)若通过人工培育且培育成本与温度和产卵数的关系为(单位:万元),则当温度为多少时,培育成本最小?

注:对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知是直线上的动点,点的坐标是,过的直线垂直,并且与线段的垂直平分线相交于点 .

(1)求点的轨迹的方程;

(2)设曲线上的动点关于轴的对称点为,点的坐标为,直线与曲线的另一个交点为(不重合),是否存在一个定点,使得三点共线?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,点在椭圆.

1)求椭圆的方程;

2)圆是以椭圆的焦距为直径的圆,点是椭圆的右顶点,过点的直线与圆相交于两点,过点的直线与椭圆相交于另一点,若,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形,且,点是线段的中点,过的平面交平面,且,且.

1)求证:

2)求直线与平面所成角的余弦值.

查看答案和解析>>

同步练习册答案