【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收人并制成如下频率分布直方图:
![]()
(1)根据频率分布直方图,估计50位农民的年平均收入
(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入
服从正态分布
,其中
近似为年平均收入
,
近似为样本方差
,经计算得
.利用该正态分布,求:
(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的
的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况, 扶贫办随机走访了1000位农民。若每个农民的年收人相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?
附:参考数据与公式
,若
~
,则①
;②
;③
.
【答案】(1)17.40万元 (2) (i) 14.77千元 (ii)978
【解析】
(1)由每一个小矩形中点的横坐标乘以频率作和得答案;
(2)由题意,X~N(17.40,6.92),.
(i)由已知数据求得P(x>μ﹣σ),进一步求得μ﹣σ得答案;
(ⅱ)求出P(X≥12.14),得每个农民年收入不少于12.14千元的事件概率为0.9773,设1000个农民年收入不少于12.14千元的人数为ξ,则ξ~B(103,p),求出恰好有k个农民的年收入不少于12.14千元的事件概率,由
1,得k<1001p,结合1001p=978.233,对k分类分析得答案.
解:(1)
千元.
(2)有题意,
~
.
(i)![]()
时,满足题意
即最低年收入大约为14.77千元
(ii)由
,得
每个农民的年收入不少于12.14千元的事件概率为0.9773,
记1000个农民的年收入不少于12.14千元的人数为
,则
,其中
,
于是恰好有
个农民的年收入不少于12.14千元的事件概率是![]()
从而由
,得![]()
而
,所以,
当
时,
,
当
时,
,
由此可知,在所走访的1000位农民中,年收入不少于12.14千元的人数最有可能是978
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率低于
,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,去掉所有为1的项,依次构成2,3,3,4,6,4,5,10,10,5,6…,则此数列的前50项和为( )
![]()
A.2025B.3052C.3053D.3049
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱
中,
,点
分别为棱
的中点.
(Ⅰ)求证:
∥平面![]()
(Ⅱ)求证:平面
平面
;
(Ⅲ)在线段
上是否存在一点
,使得直线
与平面
所成的角为300?如果存在,求出线段
的长;如果不存在,说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com