(本小题满分12分)
已知函数定义域为,若对于任意的,都有,且时,有.
(1)求证: 为奇函数;
(2)求证: 在上为单调递增函数;
(3)设,若<,对所有恒成立,求实数的取值范围.
(1)见解析(2)见解析(3)
【解析】
试题分析:(1)因为有,
令,得,所以, ……1分
令可得:
所以,所以为奇函数. ……4分
(2)是定义在上的奇函数,由题意
则,
是在上为单调递增函数; ……8分
(3)因为在上为单调递增函数,
所以在上的最大值为, ……9分
所以要使<,对所有恒成立,
只要>1,即>0, ……10分
令
. ……12分
考点:本小题主要考查有关抽象函数的奇偶性、单调性和恒成立问题,考查学生分析问题、解决问题和灵活转化的能力.
点评:解决抽象函数问题常用的方法是“赋值法”,而要考查抽象函数的性质,还要借助图象,数形结合来解决.对于恒成立问题,要转为为求最值来解决,而(3)中将函数转化为关于的函数,是这道题解题的亮点所在.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com