精英家教网 > 高中数学 > 题目详情

已知函数
(I)求f(x)的单调区间;
(II)当时,若存在使得对任意的恒成立,求的取值范围。

(I)①当时,的单调递增区间为的单调递增区间为;②当时, 的单调递增区间为的单调递增区间为;③当时,的单调递增区间为,无单调减区间;④当时,的单调递增区间为的单调递增区间为;(II)

解析试题分析:(I)先求函数的定义域及导数,,由此可知需要分四种情况讨论,求的单调区间;(II)根据已知条件:存在使得对任意的恒成立,则,再利用的单调性求,最后解不等式得的取值范围.
试题解析:(I)        2分
①当时,由,此时的单调递增区间为.由,此时的单调递增区间为
②当时,由,此时的单调递增区间为.由,此时的单调递增区间为
③当时,,此时的单调递增区间为,无单调减区间.
④当时,由,此时的单调递增区间为.由,此时的单调递增区间为.                     6分
(II)由题意知.由(I)知上为增函数,.  8分
上为减函数,,              10分
.                                    12分
考点:1.导数与函数的单调性;2.恒成立问题中的参数取值范围问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为元/本(9≤≤11),预计一年的销售量为万本.
(1)求该出版社一年的利润(万元)与每本书的定价的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润最大,并求出的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=alnx+(a≠0)在(0,)内有极值.
(I)求实数a的取值范围;
(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]时,求证:f(x1)﹣f(x2)≥ln2+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为
⑴求函数的解析式;
⑵若对于区间上任意两个自变量的值都有,求实数的最小值;
⑶若过点可作曲线的三条切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中为常数.
(Ⅰ)当函数的图象在点处的切线的斜率为1时,求函数上的最小值;
(Ⅱ)若函数上既有极大值又有极小值,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,过点作函数图象的切线,试问这样的切线有几条?并求这些切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数>0)
(1)若的一个极值点,求的值;
(2)上是增函数,求a的取值范围
(3)若对任意的总存在成立,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(I)求函数的单调递增区间;
(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)当时,求曲线在点处的切线方程;
(2)若处有极值,求的单调递增区间;
(3)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知R,函数e
(1)若函数没有零点,求实数的取值范围;
(2)若函数存在极大值,并记为,求的表达式;
(3)当时,求证:

查看答案和解析>>

同步练习册答案