精英家教网 > 高中数学 > 题目详情

已知.
(1)当时,求曲线在点处的切线方程;
(2)若处有极值,求的单调递增区间;
(3)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.

(1);(2);(3).

解析试题分析:(1)考查了导数的几何意义,先求出切线的斜率,再用点斜式写方程;(2)由求得,得结合函数的定义域求解即可;(3)首先假设存在实数满足题意,分三种情况研究函数的单调性寻找其最小值,是对函数单调性的考查.
试题解析:(1)由已知得的定义域为
因为,所以时,,所以
因为,所以                       2分
所以曲线在点处的切线方程为
.                          4分
(2)因为处有极值,所以
由(1)知所以
经检验,处有极值.                         6分
所以解得
因为的定义域为,所以的解集为
的单调递增区间为.                         8分
(3)假设存在实数a,使有最小值3,
①当时,因为
所以上单调递减,
,解得(舍去)                   10分
②当上单调递减,在上单调递增,
,满足条件.                  12分
③当
所以 上单调递减,
解得,舍去.
综上,存在实数,使得当有最小值3.             14分
考点:1.导数的几何意义;2.切线方程;3.导数法研究函数单调性;3.函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数上是增函数,
(1)求实数的取值集合
(2)当取值集合中的最小值时,定义数列;满足,求数列的通项公式;
(3)若,数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求f(x)的单调区间;
(II)当时,若存在使得对任意的恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数,,函数的图像在它们与坐标轴交点处的切线分别为,且.
(1)求常数的值及的方程;
(2)求证:对于函数公共定义域内的任意实数,有
(3)若存在使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1)当时,求函数的最大值;
(2)令)其图象上任意一点处切线的斜率 恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若时,求处的切线方程;
(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若试确定函数的单调区间;
(Ⅱ)若且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)的图象关于原点对称,当时,的极小值为,求的解析式。
(Ⅱ)若上的单调函数,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线是
(Ⅰ)求的值;
(Ⅱ)若上单调递增,求的取值范围

查看答案和解析>>

同步练习册答案