已知函数,,其中为常数,,函数和的图像在它们与坐标轴交点处的切线分别为、,且.
(1)求常数的值及、的方程;
(2)求证:对于函数和公共定义域内的任意实数,有;
(3)若存在使不等式成立,求实数的取值范围.
(1),所以直线的方程为,直线的方程为;
(2)详见解析;(3)实数的取值范围是.
解析试题分析:(1)先确定函数、的图象与坐标轴的交点,利用相应的图象在交点处的切线平行列出有关的方程求解出的值,然后在确定两个函数图象与坐标轴的交点,利用导数求出直线、的方程;
(2)利用的性质,引入函数,从而将化为,构造新函数,,问题转换为进行处理;(3)将等价转化为,构造新函数,将问题转化为进行处理,结合导数来求函数的最小值,在判断导数的符号时,可以结合基本不等式来处理.
试题解析:(1)对于函数而言,,函数的定义域为,
故函数与轴无交点,因此函数与轴有交点,
令,解得,,,
,,即函数的图象与轴无交点,与轴有交点,
且,,
由题意知,,即,解得,因为,所以,
,,,,,,
所以直线的方程为,即,
直线的方程为,即;
(2)函数与的公共定义域为,
在同一坐标系中画出函数,和函数的图象,易知当时,,
,
令,,其中,
,故函数在上单调递增,所以,
,令,解得,
当时,
科目:高中数学 来源: 题型:解答题
已知函数在点处的切线方程为.
⑴求函数的解析式;
⑵若对于区间上任意两个自变量的值都有,求实数的最小值;
⑶若过点可作曲线的三条切线,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知.
(1)当时,求曲线在点处的切线方程;
(2)若在处有极值,求的单调递增区间;
(3)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(m为常数,e=2.71828…是自然对数的底数),函数 的最小值为1,其中 是函数f(x)的导数.
(1)求m的值.
(2)判断直线y=e是否为曲线f(x)的切线,若是,试求出切点坐标和函数f(x)的单调区间;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com