已知函数![]()
(Ⅰ)若
试确定函数
的单调区间;
(Ⅱ)若
且对于任意
恒成立,试确定实数
的取值范围;
(Ⅲ)设函数
求证:
.
(Ⅰ)单调递增区间是
,单调递减区间是
;(Ⅱ)
;(Ⅲ)见解析.
解析试题分析:(Ⅰ)求出函数的导数,令导数大于零解得单调增区间,令导数小于零得单调减区间;(Ⅱ)先可得知
科目:高中数学
来源:
题型:解答题
已知函数f(x)=alnx+
科目:高中数学
来源:
题型:解答题
已知
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
是偶函数,于是
对任意
成立等价于
对任意
成立,令导数等于零得
,然后对
在
处断开进行讨论;(Ⅲ)先求得
,并证明
,然后列举累乘即可证明.
试题解析:(Ⅰ)由
得
,所以
.
由
得
,故
的单调递增区间是
, 3分
由
得
,故
的单调递减区间是
. 4分
(Ⅱ)由
可知
是偶函数.
于是
对任意
成立等价于
对任意
成立. 5分
由
得
.
①当
时,
.此时
在
上单调递增.故
,符合题意. 6分
②当
时,
.当
变化时
的变化情况如下表:![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
单调递减 极小值 ![]()
![]()
豫欣图书自主课堂系列答案
假期伙伴寒假大连理工大学出版社系列答案
鑫宇文化新课标快乐假期暑假系列答案
学霸错题笔记系列答案
暑假作业浙江教育出版社系列答案
学霸训练系列答案
尖子生课课练系列答案
七彩的假期生活暑假系列答案
蓝博士暑假作业甘肃少年儿童出版社系列答案
快乐暑假新疆美术摄影出版社系列答案
(a≠0)在(0,
)内有极值.
(I)求实数a的取值范围;
(II)若x1∈(0,
),x2∈(2,+∞)且a∈[
,2]时,求证:f(x1)﹣f(x2)≥ln2+
.
.
(1)当
时,求曲线
在点
处的切线方程;
(2)若
在
处有极值,求
的单调递增区间;
(3)是否存在实数
,使
在区间
的最小值是3,若存在,求出
的值;若不存在,说明理由.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号