精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 =1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为 ,则p=(
A.1
B.
C.2
D.3

【答案】C
【解析】解:∵双曲线 , ∴双曲线的渐近线方程是y=± x
又抛物线y2=2px(p>0)的准线方程是x=﹣
故A,B两点的纵坐标分别是y=± ,双曲线的离心率为2,所以

A,B两点的纵坐标分别是y=± =
又,△AOB的面积为 ,x轴是角AOB的角平分线
,得p=2.
故选C.
求出双曲线 的渐近线方程与抛物线y2=2px(p>0)的准线方程,进而求出A,B两点的坐标,再由双曲线的离心率为2,△AOB的面积为 ,列出方程,由此方程求出p的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2
(1)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;
(2)在(1)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;
(3)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0 , F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+m|x+a|. (Ⅰ)当m=a=﹣1时,求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤﹣3或a≥3},求实数m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80,90)的学生个数,求ξ的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形 为菱形,四边形 为平行四边形,设 相交于点

(1)证明:平面 平面
(2)若 ,求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=3,其前n项和为Sn , 等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q= (Ⅰ)求an与bn
(Ⅱ)设数列{cn}满足cn= ,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜率为 的直线l与椭圆 + =1(a>b>0)交于不同的两点A、B.若点A、B在x轴上的射影恰好为椭圆的两个焦点.
(1)求椭圆的离心率;
(2)P是椭圆上的动点,若△PAB面积最大值是4 ,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos2ωx的图象向右平移 个单位,得到函数y=g(x)的图象,若y=g(x)在 上为减函数,则正实数ω的最大值为(
A.
B.1
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的三视图如图所示,其五个顶点都在同一球面上,若四棱锥P﹣ABCD的侧面积等于4(1+ ),则该外接球的表面积是(
A.4π
B.12π
C.24π
D.36π

查看答案和解析>>

同步练习册答案