精英家教网 > 高中数学 > 题目详情
已知函数f(n)=log(n+1)(n+2)(n∈N*),若存在正整数k满足:f(1)•f(2)•f(3)•…•f(n)=k,那么我们把k叫做关于n的“对整数”,则当n∈[1,10]时,“对整数”共有(  )
分析:由题意,f(x)=log(x+1) (x+2)=
lg(x+2)
lg(x+1)
,再计算f(1)f(2)f(3)…f(x)=log2(x+2),根据1≤x≤100,得log23≤log2(x+2)≤log212,从而可得“对整数”的个数.
解答:解:由题意,根据换底公式得,f(x)=log(x+1) (x+2)=
lg(x+2)
lg(x+1)

所以k=f(1)f(2)f(3)…f(x)=
lg3
lg2
lg4
lg3
lg5
lg4
lg(x+2)
lg(x+1)
=
lg(x+2)
lg2
=log2(x+2).
∵1≤x≤10,∴log23≤log2(x+2)≤log212
整数有log24,log28,即2,3,两个整数.
故选:B.
点评:本题的考点排列、组合的实际应用,主要考查新定义,考查对数运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=xn,其中n∈Z,n≥2.曲线y=f(x)在点P(x0,f(x0))(x0>0)处的切线为l,l与x轴交于点Q,与y轴交于点R,则
|PQ|
|PR|
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+alnx.其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,给出两类直线:6x+y+m=0与3x-y+n=0,其中m,n为常数,判断这两类直线中是否存在y=f(x)的切线,若存在,求出相应的m或n的值,若不存在,说明理由.
(3)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)x-x0
>0
在D内恒成立,则称P为函数y=h(x)的“类对称点”,当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-
12
)的定义域为(n,n+1)(n∈N*),f(x)的函数值中所有整数的个数记为g(n).
(1)求出g(3)的值;
(2)求g(n)的表达式;
(3)若对于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n为组合数)都成立,求实数l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2bx的图象在点A(0,f(0))处的切线L与直线x-y+3=0平行,若数列{
1
f(n)
}的前n项和为Sn,则S2013的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}的前n项和为Sn,则S2013的值为(  )

查看答案和解析>>

同步练习册答案