精英家教网 > 高中数学 > 题目详情
某工厂对某产品的产量与单位成本的资料分析后有如下数据:
月     份123456
产量x千件234345
单位成本y元/件737271736968
(Ⅰ) 求单位成本y与月产量x之间的线性回归方程.(其中已计算得:x1y1+x2y2+…+x6y6=1481,结果 保留两位小数)
(Ⅱ) 当月产量为12千件时,单位成本是多少?
考点:线性回归方程
专题:概率与统计
分析:(Ⅰ)根据所给的这组数据,写出利用最小二乘法要用的量的结果,把所求的这些结果代入公式求出线性回归方程的系数,进而求出a的值,写出线性回归方程.
(Ⅱ)产量为12千件时,即x=12,代入回归直线方程求
y
 值.
解答: 解:(Ⅰ)
.
x
=
2+3+4+3+3+5
6
=3.5;
.
y
=
73+72+71+73+69+68
6
=71,
6
i=1
x2=79
6
i=1
xiyi=1481

b
=
6
i=1
xiyi-6
.
x
.
y
6
i=1
x2-6
.
x
2
=
1481-6×3.5×71
79-6×3.52
=-1.82,
a
=
.
y
-
b
.
x
=7.1+1.82×3.5=77.37,
∴回归直线方程为
y
=-1.82x+77.37
(Ⅱ)当
产量为12千件件时,即x=12,
y
=77.37-1.82×12=21.84(元),
故产量为12千件时,单位成本是12.84元.
点评:本题考查利用最小二乘法求回归直线方程,考查回归系数的含义,本题解题的关键是运算要准确.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)从若干张扑克牌中随机抽取一张,如果取到红心(事件A)的概率是
1
4
,取到方片(事件B)的概率是
1
4
.求:取到红色牌(事件C)的概率,取到黑色牌(事件D)的概率;
(2)同时掷两个骰子,计算向上的点数之和是6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(x,y)与两定点M1,M2距离的比是一个正数m,求点M的轨迹方程.并说明轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列推理是否正确?若不正确,指出错误之处.
(1)求证:四边形的内角和等于360°.
证明:设四边形ABCD是矩形,则它的四个角都是直角,有∠A+∠B+∠C+∠D=90°+90°+90°+90°=360°,所以四边形的内角和为360°.
(2)已知
2
3
都是无理数,试证:
2
+
3
也是无理数.
证明:设
2
3
都是无理数,而无理数与无理数之和是无理数,
所以
2
+
3
必是无理数.
(3)已知实数m满足不等式(2m+1)(m+2)<0,用反证法证明:关于x的方程x2+2x+5-m2=0无实根.
证明:假设方程x2+2x+5-m2=0有实根.由已知实数m满足不等式(2m+1)(m+2)<0,解得-2<m<-
1
2
,又关于x的方程x2+2x+5-m2=0的判别式△=4-4(5-m2)=4(m2-4),∵-2<m<-
1
2
,∴
1
4
<m2<4,∴△<0,即关于x的方程x2+2x+5-m2=0无实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实轴长为2a,虚轴长为2b的双曲线S的焦点在x轴上,直线y=-
3
x,|
OA
|2+|
OB
|2=
4
3
|
OA
|2•|
OB
|2
是双曲线S的一条渐近线,而且原点O,点A(a,0)和点B(0,-b)使等式成立.
(Ⅰ)求双曲线S的方程;
(Ⅱ)若双曲线S上存在两个点关于直线l:y=kx+4对称,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出下列数列的一个通项公式:
(1)
1
2
1
6
1
12
1
20
,…;
(2)1,2,4,8,…;
(3)
4
5
1
2
4
11
2
7
,….

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=loga
1+x
1-x
(a>0,a≠1).
(1)判断f(x)的奇偶性,并说明理由; 
(2)若0<a<1,求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
16
+
y2
4
=1的弦AB的中点M的坐标为(2,1),求直线AB的方程,并求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足
x-y+1≤0
x+y-1≥0
x-2y+a≥0
,若点(x,y)构成的平面区域中恰好有2个整点(横纵坐标均为整数),则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案