精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
16
+
y2
4
=1的弦AB的中点M的坐标为(2,1),求直线AB的方程,并求AB的长.
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:首先,根据椭圆的对称轴,得到该直线的斜率存在,设其方程为y-1=k(x-2),然后联立方程组,利用一元二次方程根与系数的关系,并且借助于中点坐标公式,确定斜率k的值,然后,利用两点间的距离公式或弦长公式,求解AB的长.
解答: 解:当直线AB的斜率不存在时,不成立,
故直线AB的斜率存在,
设其方程为y-1=k(x-2),
联立方程组
x2
16
+
y2
4
=1
y=k(x-2)+1
,消去y并整理,得
(1+4k2)x2+8k(1-2k)x+4(1-2k)2-16=0,
∴x1+x2=-
8k(1-2k)
1+4k2

x1+x2
2
=2

∴2k(2k-1)=1+4k2
∴k=-
1
2

∴直线AB的方程:x+2y-4=0.
将k=-
1
2
代人(1+4k2)x2+8k(1-2k)x+4(1-2k)2-16=0,
得x2-4x=0,
解得x=0,x=4,
∴A(0,
3
2
),B(4,-
1
2
),
∴|AB|=
42+(-
1
2
-
3
2
)2
=2
5

∴AB的长2
5
点评:本题属于中档题,重点考查了椭圆的简单几何性质、直线与椭圆的位置关系、弦长公式、两点间的距离公式等知识,属于高考的热点和重点问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)过点P(1,
2
2
),离心率e=
2
2
.求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂对某产品的产量与单位成本的资料分析后有如下数据:
月     份123456
产量x千件234345
单位成本y元/件737271736968
(Ⅰ) 求单位成本y与月产量x之间的线性回归方程.(其中已计算得:x1y1+x2y2+…+x6y6=1481,结果 保留两位小数)
(Ⅱ) 当月产量为12千件时,单位成本是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x∈(0,π),求y=sinx+
2
sinx
的最小值?
(2)若a,b为正实数,且ab-(a+b)=8,求a+b的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

一直函数f(x)=loga
1-x
1+x
(a>0,a≠1).
(1)学生甲求出f(x)的定义域为(-∞,-1)∪(1,+∞);学生乙求出f(x)的定义域为(-1,1);学生丙求出f(x)的定义域为(-∞,-1),(1,+∞).你认为谁正确?
(2)请判断函数f(x)的奇偶性;
(3)请判断函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A1B1C1D1中,AB=
3
,AD=
3
,AA1=1.
(1)AD与A1C1所成的角是多少度?
(2)DD1与B1C所成的角是多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<π,sinx+cosx=
1
5

(1)求sinx-cosx的值;
(2)求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),且双曲线的一条渐近线截圆(x-3)2+y2=8所得弦长为4,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
为单位向量,非零向量
b
=x
e1
+y
e2
,x、y∈R.若
e1
e2
的夹角为
π
6
,则
|x|
|
b
|
的最大值等于
 

查看答案和解析>>

同步练习册答案