某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交于,从而得到五边形的市民健身广场,设.
(1)将五边形的面积表示为的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.
科目:高中数学 来源: 题型:解答题
(满分16分)已知函数,其中是自然对数的底数.
(1)证明:是上的偶函数;
(2)若关于的不等式在上恒成立,求实数的取值范围;
(3)已知正数满足:存在,使得成立,试比较与的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=,g(x)=f(x)-ax,x∈[1,3],其中a∈R,记函数g(x)的最大值与最小值的差为h(a).
(1)求函数h(a)的解析式;
(2)画出函数y=h(x)的图象并指出h(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知f(x)=(x≠a).
(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(Ⅰ) 求a、b的值,并写出切线l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com