精英家教网 > 高中数学 > 题目详情

已知函数.
证明:(1)存在唯一,使
(2)存在唯一,使,且对(1)中的.

(1)详见解析;(2) 详见解析.

解析试题分析:(1)当时,,函数上为减函数,又,所以存在唯一,使.(2)考虑函数,令,则时,
,则 ,有(1)得,当时,,当时,.在是增函数,又,从而当时,,所以上无零点.在是减函数,又,存在唯一的 ,使.所以存在唯一的使.因此存在唯一的,使.因为当时,,故有相同的零点,所以存在唯一的,使.因,所以,即命题得证.
(1)当时,,函数上为减函数,又,所以存在唯一,使.
(2)考虑函数
,则时,
,则 ,
有(1)得,当时,,当时,.
是增函数,又,从而当时,,所以上无零点.
是减函数,又,存在唯一的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义在上的三个函数,且处取得极值.
(1)求a的值及函数的单调区间.
(2)求证:当时,恒有成立.[来源

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(1) 若的解集是,求实数的值;(2) 若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=x2+2bx+c(b、c∈R).
(1)若f(x)≤0的解集为{x|-1≤x≤1},求实数b、c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.
(1)判断f(x)的奇偶性;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在区间[-3,3]上的值域;
(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交,从而得到五边形的市民健身广场,设
(1)将五边形的面积表示为的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当,求上有最大值;
(3)设函数具有“性质”,且当时,.若交点个数为2013,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点为报刊零售点.请确定一个格点(除零售点外)__________为发行站,使6个零售点沿街道到发行站之间路程的和最短.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=,若关于x的方程2[f(x)]2-(2a+3)·f(x)+3a=0有五个不同的实数解,求a的取值范围.

查看答案和解析>>

同步练习册答案