精英家教网 > 高中数学 > 题目详情

已知函数,(1) 若的解集是,求实数的值;(2) 若恒成立,求实数的取值范围.

(1) ;(2) .

解析试题分析:(1)易知是方程的两个根,即可联立含的方程组求解;(2)由构建的关系,而恒成立,转化为恒成立,结合二次函数的图像可知只需即可.
试题解析:(1) 由题意得:是方程的两个根,所以:,解得;⑵ 由,而恒成立 , 即: 恒成立,所以,解得 ,此为所求的的取值范围.
考点: 1,二次不等式与二次函数;二次方程的联系;2,蕴含方程的思想,化归与转化的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)用反证法证明:函数不可能为偶函数;
(2)求证:函数上单调递减的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交,从而得到五边形的市民健身广场,设
(1)将五边形的面积表示为的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分16分)已知函数,其中是自然对数的底数.
(1)证明:上的偶函数;
(2)若关于的不等式上恒成立,求实数的取值范围;
(3)已知正数满足:存在,使得成立,试比较的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
证明:(1)存在唯一,使
(2)存在唯一,使,且对(1)中的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=,g(x)=f(x)-ax,x∈[1,3],其中a∈R,记函数g(x)的最大值与最小值的差为h(a).
(1)求函数h(a)的解析式;
(2)画出函数y=h(x)的图象并指出h(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)设a>0,b>0,已知函数f(x)=
(1)当a≠b时,讨论函数f(x)的单调性;
(2)当x>0时,称f(x)为a、b关于x的加权平均数.
(1)判断f(1),f(),f()是否成等比数列,并证明f()≤f();
(2)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数的图像如图所示,则              

查看答案和解析>>

同步练习册答案