精英家教网 > 高中数学 > 题目详情

设函数.
(1)用反证法证明:函数不可能为偶函数;
(2)求证:函数上单调递减的充要条件是.

(1)祥见解析;(2) 祥见解析.

解析试题分析:(1)反证法证明的一般步骤是:先假设结论不正确,从而肯定结论的反面一定成立,在此基础上结合题目已知条件,经过正确的推理论证得到一个矛盾,从而得到假设不成立,所以结论正确;此题只需假设假设函数是偶函数,既然是偶函数,则对定义域内的一切x都有成立,那么我们为了说明假设不成立,即 不可能成立,只需任取一个特殊值代入检验即可;(2)由于是证明函数上单调递减的充要条件是:;应分充分性和必要性两个方面来加以证明,先证充分性:来证明一定成立;再证必要性:由函数上单调递减上恒成立,来证明即可,注意已知中的这一条件.
试题解析:(1)假设函数是偶函数,                                         2分
,即,解得,                            4分
这与矛盾,所以函数不可能是偶函数.                               6分
(2)因为,所以.                                 8分
①充分性:当时,
所以函数单调递减;                                       10分
②必要性:当函数单调递减时,
,即,又,所以.                      13分
综合①②知,原命题成立.                                                  14分
(说明:用函数单调性的定义证明的,类似给分;用反比例函数图象说理的,适当扣分)
考点:1.反证法;2.函数的单调性;3.充要性的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数),
(1)求函数的单调区间,并确定其零点个数;
(2)若在其定义域内单调递增,求的取值范围;
(3)证明不等式 ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的定义域;
(2)讨论的奇偶性;
(3)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义域为.
(1)求集合
(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的三个函数,且处取得极值.
(1)求a的值及函数的单调区间.
(2)求证:当时,恒有成立.[来源

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(1) 若的解集是,求实数的值;(2) 若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

某企业投资72万元兴建一座环保建材厂. 第1年各种经营成本为12万元,以后每年的经营成本增加4万元,每年销售环保建材的收入为50万元. 则该厂获取的纯利润达到最大值时是在第      年.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点为报刊零售点.请确定一个格点(除零售点外)__________为发行站,使6个零售点沿街道到发行站之间路程的和最短.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=,若关于x的方程2[f(x)]2-(2a+3)·f(x)+3a=0有五个不同的实数解,求a的取值范围.

查看答案和解析>>

同步练习册答案