【题目】某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有
个电子元件,将每组的
个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当
时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为
,求
的数学期望;
(3)估算当
为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用
进行估算).
科目:高中数学 来源: 题型:
【题目】已知数列
的各项均为正数,且
,对于任意的
,均有
,
.
(1)求证:
是等比数列,并求出
的通项公式;
(2)若数列
中去掉
的项后,余下的项组成数列
,求
;
(3)设
,数列
的前
项和为
,是否存在正整数
,使得
、
、
成等比数列,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其导函数设为
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)若函数
有两个极值点
,
,试用
表示
;
(Ⅲ)在(Ⅱ)的条件下,若
的极值点恰为
的零点,试求
,
这两个函数的所有极值之和的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆心在曲线
上,与直线x+y+1=0相切,且面积最小的圆的方程为( )
A. x2+(y-1)2=2B. x2+(y+1)2=2C. (x-1)2+y2=2D. (x+1)2+y2=2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数
,标准差
,绘制如图所示的频率分布直方图,以频率值作为概率估值。
![]()
(1)从该生产线加工的产品中任意抽取一件,记其数据为
,依据以下不等式评判(
表示对应事件的概率)
①![]()
②![]()
③![]()
评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;
(2)将数据不在
内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为
,求
的分布列与数学期望
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
表示不小于x的最小整数,例如
.
(1)设
,
,若
,求实数m的取值范围;
(2)设
,
在区间
(
)上的值域为
,求集合
中元素的个数;
(3)设
(
),
,若对于
,
,都有
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系
,以
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的参数方程为
(
为参数),点
时曲线
上两点,点
的极坐标分别为
,
.
(1)写出曲线
的普通方程和极坐标方程;
(2)求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com