【题目】如图,在三棱锥P—ABC中,△PAC为等腰直角三角形,
为正三角形,D为A的中点,AC=2.
![]()
(1)证明:PB⊥AC;
(2)若三棱锥
的体积为
,求二面角A—PC—B的余弦值
科目:高中数学 来源: 题型:
【题目】某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是( )
![]()
A.甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前
B.乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前
C.甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前
D.甲同学的总成绩排名比丙同学的总成绩排名更靠前
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为:
,(t为参数).在以坐标原点0为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣4ρcosθ﹣4ρsinθ+4=0.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C交于A,B两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司进行共享单车的投放与损耗统计,到去年
年底单车的市场保有量(已投入市场且能正常使用的单车数量)为
辆,预计今后每年新增单车1000辆,随着单车的频繁使用,估计每年将有200辆车的损耗,并且今后若干年内,年平均损耗在上一年损耗基础上增加
%.
(1)预计
年底单车的市场保有量是多少?
(2)到哪一年底,市场的单车保有量达到最多?该年的单车保有量是多少辆(最后结果精确到整数)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
,其中m是不等于零的常数.
(1)
时,直接写出
的值域;
(2)求
的单调递增区间;
(3)已知函数
,
,定义:
,
,
,
,其中,
表示函数
在
上的最小值,
表示函数
在
上的最大值.例如:
,
,则
,
,
,
.当
时,
恒成立,求n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若
、
且
,证明:函数
必有局部对称点;
(2)若函数
在区间
内有局部对称点,求实数
的取值范围;
(3)若函数
在
上有局部对称点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
![]()
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(其中
为参数),曲线
的参数方程为
(其中
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
、
的极坐标方程;
(2)射线
:
与曲线
,
分别交于点
,
(且点
,
均异于原点
),当
时,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com