精英家教网 > 高中数学 > 题目详情

设椭圆数学公式的两个焦点是F1(-c,0),F2(c,0)(c>0).
(1)设E是直线y=x+2与椭圆的一个公共点,求使得|EF1|+|EF2|取最小值时椭圆的方程;
(2)已知N(0,-1)设斜率为k(k≠0)的直线l与条件(1)下的椭圆交于不同的两点A,B,点Q满足数学公式,且数学公式,求直线l在y轴上截距的取值范围.

解:(1)由题意,知m+1>1,即m>0.

得(m+2)x2+4(m+1)x+3(m+1)=0.
由△=16(m+1)2-12(m+2)(m+1)=4(m+1)(m-2)≥0,
解得m≥2,或m≤-1(舍去)∴m≥2(3分)
此时
当且仅当m=2时,|EF1|+|EF2|.取得最小值
此时椭圆方程为
(2)设直线l的方程为y=kx+t.
由方程组
消去y得(1+3k2)x2+6ktx+3t2-3=0.∵直线l与椭圆交于不同两点A、B∴△=(6kt)2-4(1+3k2)(3t2-3)>0,
即t2<1+3k2
设A(x1,y1),B(x2,y2),

,得Q为线段AB的中点,
.∵
∴kAB•kQN=-1,[来源:学,科,即
化简得1+3k2=2t.代入①得t2<2t,解得0<t<2.
又由
所以,直线l在y轴上的截距t的取值范围是
分析:(1)由题意知m>0.由,得(m+2)x2+4(m+1)x+3(m+1)=0.由△≥0,得m≥2,或m≤-1(舍去).此时.由此能求出椭圆方程.
(2)设直线l的方程为y=kx+t.由方程组,得(1+3k2)x2+6ktx+3t2-3=0.由△>0,知t2<1+3k2,设A(x1,y1),B(x2,y2),则.由,得Q为线段AB的中点,由此能求出截距t的取值范围.
点评:本题考查椭圆方程的求法和截距t的取值范围.解题时要认真审题,利用椭圆性质注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F1,F2为椭圆
x2
2
+y2=1
的两个焦点,点O为坐标原点,圆O是以F1,F2为直径的圆,一条直线与圆O相切并与椭圆交于不同的两点A,B.
(1)设b=f(k),求f(k)的表达式;
(2)若
OA
OB
=
2
3
,求直线l的方程;
(3)若
OA
OB
=m,(
2
3
≤m≤
3
4
)
,求三角形OAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的有
 

①若点P(x0,y0)是抛物线y2=2px上一点,则该点到抛物线的焦点的距离是|PF|=x0+
p
2

②设F1、F2为双曲线
x2
a2
-
y2
b2
=1的两个焦点,P(x0,y0)为双曲线上一动点,∠F1PF2=θ,则△PF1F2的面积为b2tan
θ
2

③设定圆O上有一动点A,圆O内一定点M,AM的垂直平分线与半径OA的交点为点P,则P的轨迹为一椭圆;
④设抛物线焦点到准线的距离为p,过抛物线焦点F的直线交抛物线于A、B两点,则
1
|AF|
1
p
1
|BF|
成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P.

(1)试用a表示点P的坐标;

(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;

(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个. 设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省台州中学高三(上)第二次统练数学试卷(理科)(解析版) 题型:解答题

已知点F1,F2为椭圆的两个焦点,点O为坐标原点,圆O是以F1,F2为直径的圆,一条直线与圆O相切并与椭圆交于不同的两点A,B.
(1)设b=f(k),求f(k)的表达式;
(2)若,求直线l的方程;
(3)若,求三角形OAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省台州中学(上)第二次统练数学试卷(理科)(解析版) 题型:解答题

已知点F1,F2为椭圆的两个焦点,点O为坐标原点,圆O是以F1,F2为直径的圆,一条直线与圆O相切并与椭圆交于不同的两点A,B.
(1)设b=f(k),求f(k)的表达式;
(2)若,求直线l的方程;
(3)若,求三角形OAB面积的取值范围.

查看答案和解析>>

同步练习册答案