精英家教网 > 高中数学 > 题目详情
7.已知集合A={x|x2-2x-3<0},B={x|(x-m+1)(x-m-1)≥0},
(Ⅰ)当m=0时,求A∩B.
(Ⅱ)若p:x2-2x-3<0,q:(x-m+1)(x-m-1)≥0,且q是p的必要不充分条件,求实数m的取值范围.

分析 (Ⅰ)化简A,B,根据交集的定义求出即可,
(Ⅱ)根据又q是p的必要不充分条件,即p⇒q,即可求出m的取值范围.

解答 解:(Ⅰ):A={x|x2-2x-3<0}=(-1,3),B={x|(x+1)(x-1)≥0}=(-∞,-1]∪[1,+∞),
∴A∩B=[1,3),
(Ⅱ)  P为:(-1,3),而q为:(-∞,m-1]∪[m+1,+∞),又q是p的必要不充分条件,即p⇒q
所以m+1≤-1或m-1≥3,
解得m≥4或m≤-2.

点评 本题考查了集合的运算和充分必要条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.
(Ⅰ) 求函数f(x)的定义域;
(Ⅱ) 判断函数f(x)的奇偶性,并证明;
(Ⅲ) 若f(x)=-$\frac{5}{3}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y满足约束条件$\left\{\begin{array}{l}{x≥y}\\{y≥4x-3}\\{x≥0,y≥0}\end{array}\right.$,若目标函数$z=x+\frac{n}{2}y({n>0})$,z最大值为2,则$y=tan({nx+\frac{π}{6}})$的图象向右平移$\frac{π}{6}$后的表达式为(  )
A.$y=tan({2x+\frac{π}{6}})$B.$y=cot({x-\frac{π}{6}})$C.$y=tan({2x-\frac{π}{6}})$D.y=tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,${a_1}=1,{a_{n+1}}=2{a_n}+n-1({n∈{N^*}})$,则其前n项和Sn=${2^{n+1}}-2-\frac{{n({n+1})}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC,sin A:sin B:sin C=1:1:$\sqrt{2}$,则此三角形的最大内角的度数是90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合$A=\left\{{y|y=\sqrt{3-2x},x∈[{-\frac{13}{2},\frac{3}{2}}]}\right\}$,B={x|1-m≤x≤m+1}.
(1)若m=2,求A∩B;
(2)若B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“对任意的x∈R,x2-x+1≥0”的否定是(  )
A.不存在x0∈R,x02-2x0+1≥0B.存在x0∈R,x02-2x0+1≤0
C.存在x0∈R,x02-2x0+1<0D.对任意的x∈R,x2-2x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(-x)=f(x),则称f(x)为类偶函数,则下列函数中为类偶函数的是(  )
A.f(x)=cosxB.f(x)=sinxC.f(x)=x2-2xD.f(x)=x3-2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a>0,函数f(x)=a2x3-3ax2+2,g(x)=-3ax+3.
(1)若a=1,求函数f(x)的图象在点x=1处的切线方程;
(2)求函数f(x)在区间[-1,1]上的极值;
(3)若?x0∈(0,$\frac{1}{2}$],使不等式f(x0)>g(x0)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案