分析 若已知三角形的两边和其中一边的对角,要求该三角形的形状大小唯一确定,则该三角形是直角三角形或钝角三角形,根据勾股定理确定BC的长,再进一步确定钝角三角形时的取值范围.
解答 解:已知在△ABC中A=45°,b=1,要使△ABC的解有且仅有一个,即三角形形状唯一,
有两种情况:①△ABC为直角三角形;②△ABC为钝角三角形;
若△ABC为直角三角形,∠B=90°,可得c⊥a,此时a=cos45°×1=$\frac{\sqrt{2}}{2}$;
若三角形为钝角三角形;可得a≥1;
综上:a=$\frac{\sqrt{2}}{2}$或a≥1;
故答案为:a≥1或$a=\frac{{\sqrt{2}}}{2}$.
点评 此题要注意:已知三角形的两边和其中一边的对角,要使该三角形的形状大小唯一确定,则该三角形是直角三角形或钝角三角形.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | $\sqrt{3}$ | C. | 3 | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{{2\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a6≥b6 | B. | a6≤b6 | C. | a12≥b12 | D. | a12<b12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com