精英家教网 > 高中数学 > 题目详情
8.在△ABC中,已知A=45°,b=1,且△ABC仅有一个解,则a的取值范围是a≥1或$a=\frac{{\sqrt{2}}}{2}$.

分析 若已知三角形的两边和其中一边的对角,要求该三角形的形状大小唯一确定,则该三角形是直角三角形或钝角三角形,根据勾股定理确定BC的长,再进一步确定钝角三角形时的取值范围.

解答 解:已知在△ABC中A=45°,b=1,要使△ABC的解有且仅有一个,即三角形形状唯一,
有两种情况:①△ABC为直角三角形;②△ABC为钝角三角形;
若△ABC为直角三角形,∠B=90°,可得c⊥a,此时a=cos45°×1=$\frac{\sqrt{2}}{2}$;
若三角形为钝角三角形;可得a≥1;
综上:a=$\frac{\sqrt{2}}{2}$或a≥1;
故答案为:a≥1或$a=\frac{{\sqrt{2}}}{2}$.

点评 此题要注意:已知三角形的两边和其中一边的对角,要使该三角形的形状大小唯一确定,则该三角形是直角三角形或钝角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知a,b∈R,i是虚数单位,若a+i与2+bi互为共轭复数,则在复平面内,复数z=$\frac{a+bi}{1+i}$所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=|x+1|+|x-a|,若不等式f(x)≥6的解集为(-∞,-2]∪[4,+∞),则实数a的值为(  )
A.-3B.$\sqrt{3}$C.3D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是一系列某种物质的结构图,则第n个图形中小黑点有4n+2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则异面直线AB1与BC1所成角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{{2\sqrt{10}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}和等比数列{bn}各项都是正数,且a1=b1,a11=b11那么一定有(  )
A.a6≥b6B.a6≤b6C.a12≥b12D.a12<b12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,a,b,c分别为内角A,B,C的对边,且$\frac{cosC}{cosA}=\frac{2b-c}{a}$.
(1)求角A的大小;
(2)若a=3,求△ABC的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x1,x2为方程x2-2x+a=0的两根,f(x)=$\frac{1}{3}$x3-x2+ax-a,若f(x1)f(x2)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设计一个算法,输人n个实数,计算并输出它们的平均数,画出这个算法的程序框图.

查看答案和解析>>

同步练习册答案