精英家教网 > 高中数学 > 题目详情

设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.
(1)求ω的值;
(2)求f(x)在区间[π,]上的最大值和最小值.

(1) ω=1   (2) ,-1

解析解:(1)f(x)=-sin2ωx-sinωxcosωx
=-·-sin2ωx
=cos2ωx-sin2ωx
=-sin(2ωx-).
因为图象的一个对称中心到最近的对称轴的距离为,
又ω>0,
所以=4×,
因此ω=1.
(2)由(1)知f(x)=-sin(2x-).
当π≤x≤时,≤2x-.
所以-≤sin(2x-)≤1.
因此-1≤f(x)≤.
故f(x)在区间[π,]上的最大值和最小值分别为,-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,函数.
⑴设,x为某三角形的内角,求时x的值;
⑵设,当函数取最大值时,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值及函数的最小正周期;
(2)求函数上的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化简:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=(cosx,-),b=(sinx,cos2x),x∈R,设函数f(x)=a·b.
(1)求f(x)的最小正周期.
(2)求f(x)在[0,]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.
(1)求函数f(x)的表达式;
(2)若sinα+f(α)=,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=cos(ωx+φ)的最小正周期为π,且f.
(1)求ω和φ的值;
(2)在给定坐标系中作出函数f(x)在[0,π]上的图象;

(3)若f(x)>,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin2sin.
(1)在△ABC中,若sin C=2sin AB为锐角且有f(B)=,求角ABC
(2)若f(x)(x>0)的图象与直线y交点的横坐标由小到大依次是x1x2,…,xn,求数列{xn}的前2n项和,n∈N*.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=sinsinsinxcosx(x∈R).
(1)求f的值;
(2)在△ABC中,若f=1,求sinB+sinC的最大值.

查看答案和解析>>

同步练习册答案