精英家教网 > 高中数学 > 题目详情
求函数y=2x2-8x+3,x∈[2,5]的值域.
[-5,13]
[-5,13]
分析:先配方,利用二次函数的单调性即可求出.
解答:解:∵y=2(x-2)2-5,2>0,
∴此函数在[2,5]上单调递增,
∵f(2)=-5,f(5)=2×32-5=13,
∴函数f(x)的值域是[-5,13]
点评:熟练掌握二次函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系Q=
39(2x2-29x+107)(5<x<7)
198-6x
x-5
(7≤x<8)

(1)求总利润(利润=销售额-成本)y(元)与实际销售价x(件)的函数关系式;
(2)试问:当实际销售价为多少元时,总利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:满足关于x的不等式2x2-9x+a<0(解集非空)的每一个x的值至少满足不等式x2-4x+3<0和x2-6x+8<0中的一个;命题q:函数y=lg(ax2-x+a)的定义域为R.
(1)求命题p成立时a的取值范围;
(2))如果“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=3x2-x+2;    (2)y=
-x2-6x-5
;   (3)y=
3x+1
x-2

(4)y=x+4
1-x
;  (5)y=x+
1-x2
;   (6)y=|x-1|+|x+4|;
(7)y=
2x2-x+2
x2+x+1
;  (8)y=
2x2-x+1
2x-1
(x>
1
2
)
; (9)y=
1-sinx
2-cosx

(10)y=
x2-5x+6
x2+x-6
;    (11)y=2x+4
1-x
;    (12)y=-
x
x2+2x+2

(13)y=4-
3+2x-x2
;(14)y=x-
1-2x
;(15)y=
2x2+2x+5
x2+x+1

查看答案和解析>>

科目:高中数学 来源:湖北模拟 题型:解答题

某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q (件)与实际销售价x (元)满足关系Q=
39(2x2-29x+107)(5<x<7)
198-6x
x-5
(7≤x<8)

(1)求总利润(利润=销售额-成本)y(元)与实际销售价x(件)的函数关系式;
(2)试问:当实际销售价为多少元时,总利润最大.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省抚州市广昌一中、崇仁一中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

命题p:满足关于x的不等式2x2-9x+a<0(解集非空)的每一个x的值至少满足不等式x2-4x+3<0和x2-6x+8<0中的一个;命题q:函数y=lg(ax2-x+a)的定义域为R.
(1)求命题p成立时a的取值范围;
(2))如果“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

同步练习册答案