精英家教网 > 高中数学 > 题目详情
已知双曲线的中心在原点,焦点在x轴上,其渐近线与圆x2+y2-10x+20=0相切,过点P(-4,0)作斜率为的直线l,交双曲线左支于A,B两点,交y轴于点C,且满足|PA|· |PB|=|PC|2
(1)求双曲线的标准方程;
(2)设点M为双曲线上一动点,点N为圆x2+(y-2)2=上一动点,求|MN|的取值范围。
解:(1)设双曲线的渐近线方程为y=kx,
因为渐近线与圆(x-5)2+y2=5相切,
,即
所以双曲线的渐近线方程为
设双曲线方程为x2-4y2=m,
代入双曲线方程,
整理,得3x2+56x+112+4m=0
所以
因为|PA|·|PB|=|PC|2
点P,A,B,C共线,且点P在线段AB上,
则(xP-xA)(xB-xP)=(xP-xC2
即(xB+4)(-4-xA)=16
所以4(xA+xB)+xAxB+32=0
于是,解得m=4
故双曲线方程是x2-4y2=4,即
(2)设点M(x,y),圆的圆心为D,
则x2-4y2=4,点D(0,2)
所以|MD|2=x2+(y-2)2=4y2+4+(y-2)2
 
所以
从而
故|MN|的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为
2
,且过点(4,-
10
)
,则双曲线的标准方程是
x2-y2=6
x2-y2=6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点为F1(5,0),F2(-5,0),且过点(3,0),
(1)求双曲线的标准方程.
(2)求双曲线的离心率及准线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,-
10
)

(1)求双曲线方程;
(2)设A点坐标为(0,2),求双曲线上距点A最近的点P的坐标及相应的距离|PA|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,-
10
)
,A点坐标为(0,2),则双曲线上距点A距离最短的点的坐标是
7
,1)
7
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)已知双曲线的中心在原点,焦点在x轴上,一条渐近线方程为y=
3
4
x
,则该双曲线的离心率是
5
4
5
4

查看答案和解析>>

同步练习册答案