设
为数列
的前
项和,对任意的
,都有![]()
为常数,且
.
(1)求证:数列
是等比数列;
(2)设数列
的公比
,数列
满足
,求数列
的通项公式;
(3)在满足(2)的条件下,求数列
的前
项和
.
(1)证明:当
时,
,解得
.…………………1分
当
时,
.即
.………2分
又
为常数,且
,∴![]()
. ………………………3分
∴数列
是首项为1,公比为
的等比数列. ……………………4分
(2)解:由(1)得,![]()
,
. ………………………5分
∵
,∴
,即![]()
. ………7分
∴
是首项为
,公差为1的等差数列. ………………………………………8分
∴
,即
(
). ………………………9分
(3)解:由(2)知
,则
.
所以
, ………………10分
即![]()
,
① ……11分
则
, ②………12分
②-①得
,
……………………13分
故
. ………………14分
【解析】本题主要考查等比数列的性质.当出现等比数列和等差数列相乘的形式时,求和可用错位相减法.
(1)当n≥2时,根据an=Sn-Sn-1,进而得出an和an-1的关系整理得an
an-1 =m
(
1+m) ,因m为常数,进而可证明当n≥2时数列{an}是等比数列.,当n=1时等式也成立,原式得证.
(2)根据(1)可得f(m)的解析式.再根据bn=f(bn-1)整理可得(1
bn) -(1
bn-1)
=1进而推知数列{bn}为等差数列,首项为2a1,公差为1,再根据等差数列的通项公式可得答案.
(3)把(2)中的bn代入{2n+1
bn },再通过错位相减法求得Tn
科目:高中数学 来源:广东省惠阳高级中学10-11学年高一下学期期末考试数学 题型:解答题
(本小题满分14分)设
为数列
的前
项和,对任意的
N
,都有![]()
为常数,且
.
(1)求证:数列
是等比数列;
(2)设数列
的公比
,数列
满足
,
N![]()
,求数列
的通项公式;
(3)在满足(2)的条件下,求证:数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源:2012届安徽省师大附中高三第三次模拟考试理科数学试卷 题型:解答题
(满分12分)设
为数列
的前
项和,对任意的
,都有![]()
为常数,且
.
(1)求证:数列
是等比数列;
(2)设数列
的公比
,数列
满足
,求数列
的通项公式;
(3)在满足(2)的条件下,求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源:2014届广东省“十校”高三第一次联考理科数学试卷(解析版) 题型:解答题
设
为数列
的前
项和,对任意的
,都有
(
为正常数).
(1)求证:数列
是等比数列;
(2)数列
满足
求数列
的通项公式;
(3)在满足(2)的条件下,求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源:2014届吉林省高二上学期期中考试数学试卷(解析版) 题型:解答题
已知函数
定义在区间
上,
,且当
时,
恒有
.又数列
满足
.
(1)证明:
在
上是奇函数;
(2)求
的表达式;
(3)设
为数列
的前
项和,若
对
恒成立,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com