精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,首项为a1,公比为q,Sn表示其前n项和.
(I)记Sn=A,S2n-Sn=B,S3n-S2n=C,证明A,B,C成等比数列;
(II)若a1=a∈[
1
2010
1
1949
]
S6
S3
=9
,记数列{log2an}的前n项和为Tn,当n取何值时,Tn有最小值.
分析:( I)A=
a1(1-qn)
1-q
B=
an+1(1-qn)
1-q
C=
a2n+1(1-qn)
1-q
.故
B
A
=
an+1
a1
=qn
C
B
=
a2n+1
an+1
=
an+1qn
an+1
=qn
.所以A,B,C成等比数列;
(II)若q=1,则
S6
S3
=
6a1
3a1
=2≠9
,与题设矛盾;若q≠1,则
S6
S3
=
a1(1-q6)
a1(1-q3)
=1+q3
,故有1+q3=9,解得q=2.
所以an=a•2n-1,可知log2an=n-1+log2a.由此入手能够推导出当n=11时,Tn有最小值.
解答:解:( I)当q=1时,A=na1,B=2na1-na1=na1
C=3na1-2na1=na1,可见A,B,C成等比数列;(2分)
当q≠1时,A=
a1(1-qn)
1-q
B=
an+1(1-qn)
1-q

C=
a2n+1(1-qn)
1-q
.故有
B
A
=
an+1
a1
=qn

C
B
=
a2n+1
an+1
=
an+1qn
an+1
=qn

可得
B
A
=
C
B
,这说明A,B,C成等比数列.
综上,A,B,C成等比数列;(6分)

(II)若q=1,则
S6
S3
=
6a1
3a1
=2≠9

与题设矛盾,此情况不存在;
若q≠1,则
S6
S3
=
a1(1-q6)
a1(1-q3)
=1+q3

故有1+q3=9,解得q=2. (8分)
所以an=a•2n-1,可知log2an=n-1+log2a.
所以数列{log2an}是以log2a为首项,1为公差的等差数列.
令log2an≤0,即n-1+log2a≤0?n≤1-log2a.
因为a∈[
1
2010
1
1949
]

所以log2a∈[-log22010,-log21949],(10分)
即得1-log2a∈[1+log21949,1+log22010],
可知满足log2an≤0的最大的n值为11.
所以,数列{log2an}的前11项均为负值,
从第12项开始都是正数.因此,当n=11时,Tn有最小值. (12分)
点评:本题考查数列的性质和应用,解题时要注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案