精英家教网 > 高中数学 > 题目详情
16.(1)定义在(-1,1)上的奇函数f(x)为减函数,且f(1-a)+f(1-a2)>0,则实数a的取值范围为(1,$\sqrt{2}$).
(2)定义在[-2,2]上的偶函数g(x),当x≥0时,g(x)为减函数,若g(1-m)<g(m)成立,则m的取值范围为[-1,$\frac{1}{2}$).

分析 (1)根据题意,将题中不等式转化成f(1-a)<-f(1-a2),利用f(x)是定义在(-1,1)上的减函数得到关于a的不等式,解之即可得到实数a的取值范围.
(2)由题设条件函数是一个定义在[-2,2]上的偶函数g(x)满足:当x≥0时,g(x)单调递减,故可根据偶函数的性质得出函数的单调性,然后由单调性将不等式转化为一次不等式即可,转化时要注意定义域的限制,保证转化等价.

解答 解:(1)由f(1-a)+f(1-a2)>0,得f(1-a)>-f(1-a2).
∵f(x)是奇函数,
∴-f(1-a2)=f(a2-1).
于是f(1-a)>f(a2-1).
又由于f(x)在(-1,1)上是减函数,
因此$\left\{\begin{array}{l}{1-a<{a}^{2}-1}\\{-1<1-a<1}\\{-1<{a}^{2}-1<1}\end{array}\right.$
解得1<a<$\sqrt{2}$.
(2):∵定义在[-2,2]上的偶函数g(x)满足:当x≥0时,g(x)单调递减
∴偶函数g(x)在[-2,0]上是增函数,在[0,2]上是减函数,即自变量的绝对值越小,函数值越大
∵g(1-m)<g(m),
∴$\left\{\begin{array}{l}{|1-m|>|m|}\\{-2≤1-m≤2}\\{-2≤m≤2}\end{array}\right.$,解得-1≤m<$\frac{1}{2}$.
故答案为(1,$\sqrt{2}$);[-1,$\frac{1}{2}$).

点评 本题给出函数的单调性,求解关于a(m)的不等式.着重考查了函数的奇偶性、单调性和不等式的解法等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,a1=1,当n≥2时,${a_n}=\frac{{3{a_{n-1}}}}{{{a_{n-1}}+3}}$
(1)求a2,a3,a4
(2)猜想数列{an}的通项an,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解不等式:
(1)解不等式:$\frac{3-x}{5+2x}$≤0.
(2)解不等式组$\left\{{\begin{array}{l}{{x^2}-3x<0}\\{\frac{1}{x}≤x}\end{array}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={1,2,3,4,6,7,9},集合B={1,2,4,8,9},则A∩B=(  )
A.{1,2,4,9}B.{2,4,8}C.{1,2,8}D.{1,2,9}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1:mx+y+n=0过l2:x+y-1=0与l3:3x-y-7=0的交点(mn>0),则$\frac{1}{m}$+$\frac{2}{n}$的最小值(  )
A.6B.-6C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A中含4个元素,B中含3个元素,则从A到B的映射有(  )个.
A.43B.34C.12D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={0,1,2},集合B={x|x=ab,a∈A,b∈A},则集合B的真子集个数(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α-π)tan(-α+\frac{3}{2}π)}{sin(-α-π)}$.若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,α是第三象限角,求f(α);
(2)若α、β为锐角,且cos(α+β)=$\frac{12}{13}$,cos(2α+β)=-$\frac{3}{5}$,求cosα 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A(x,2,-1)、B(6,4,1),且|AB|=2$\sqrt{3}$,求x的值.

查看答案和解析>>

同步练习册答案