精英家教网 > 高中数学 > 题目详情
11.直线l1:mx+y+n=0过l2:x+y-1=0与l3:3x-y-7=0的交点(mn>0),则$\frac{1}{m}$+$\frac{2}{n}$的最小值(  )
A.6B.-6C.8D.-8

分析 由已知解得l2与l3的交点坐标,由已知可得:2m+n=1,又mn>0,再利用“乘1法”和基本不等式的性质即可得出.

解答 解:∵由$\left\{\begin{array}{l}{x+y-1=0}\\{3x-y-7=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,
即l2与l3的交点坐标为:(2,-1),
又∵直线l1:mx+y+n=0过点(2,-1),
∴2m-1+n=0,可得:2m+n=1,
又∵mn>0.
∴$\frac{1}{m}$+$\frac{2}{n}$=(2m+n)($\frac{1}{m}$+$\frac{2}{n}$)=4+$\frac{4m}{n}$+$\frac{n}{m}$≥4+2$\sqrt{\frac{4m}{n}•\frac{n}{m}}$=8,
当且仅当2m=n=$\frac{1}{2}$时取等号.
故选:C.

点评 本题主要考查了“乘1法”和基本不等式的性质,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.△ABC中,A=60°,边$a=3\sqrt{3}$
(1)若c=3,求边b的长;
(2)当c=3时,若$\overrightarrow{CD}=\sqrt{3}\overrightarrow{DA}$,求∠DBC的大小;
(3)若$sinB=(\sqrt{3}-1)sinC$,求sinB•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,在区间(0,1)上是增函数的是(  )
A.y=|x-1|B.y=x${\;}^{\frac{1}{2}}$C.y=$\frac{1}{x}$D.y=2x2-x+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正数a,b,c满足:5c-3a≤b≤4c-a,clnb≥a+clnc,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow p$=(a,sinB+sinC),$\overrightarrow q$=(sinA-sinB,b-c),且$\overrightarrow p$⊥$\overrightarrow q$
(1)求角C;
(2)若边c=$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1)定义在(-1,1)上的奇函数f(x)为减函数,且f(1-a)+f(1-a2)>0,则实数a的取值范围为(1,$\sqrt{2}$).
(2)定义在[-2,2]上的偶函数g(x),当x≥0时,g(x)为减函数,若g(1-m)<g(m)成立,则m的取值范围为[-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+x+x3)dx=$\frac{π+3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义一种运算(a,b)*(c,d)=ad-bc,若函数f(x)=(1,log3x)*(tan$\frac{13π}{4}$,($\frac{1}{5}$)x),x0是方程f(x)=0的解,且0≤x0<x1,则f(x1)的值(  )
A.恒为负值B.等于0C.恒为正值D.不大于0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=x2+bx+c的单调减区间是(-∞,1],则(  )
A.b≤-2B.b≤-1C.b=-1D.b=-2

查看答案和解析>>

同步练习册答案