精英家教网 > 高中数学 > 题目详情
20.定义一种运算(a,b)*(c,d)=ad-bc,若函数f(x)=(1,log3x)*(tan$\frac{13π}{4}$,($\frac{1}{5}$)x),x0是方程f(x)=0的解,且0≤x0<x1,则f(x1)的值(  )
A.恒为负值B.等于0C.恒为正值D.不大于0

分析 求出f(x)=($\frac{1}{5}$)x-log3x.从而($\frac{1}{5}$)x0-log3x0=0.由函数f(x)=($\frac{1}{5}$)x-log3x 在区间(0,x0)上是单调减函数,f(x0)=0,能求出结果.

解答 解:∵(a,b)*(c,d)=ad-bc,
∴f(x)=(1,log3x)*(tan$\frac{13π}{4}$,($\frac{1}{5}$)x)=($\frac{1}{5}$)x-tan$\frac{13π}{4}$•log3x=($\frac{1}{5}$)x-log3x.
∵x0是方程f(x)=0的解,∴($\frac{1}{5}$)x0-log3x0=0.
又由于函数f(x)=($\frac{1}{5}$)x-log3x 在区间(0,x1)上是单调减函数,f(x0)=0,
∵0≤x0<x1,∴f(x1)<0.
故选:A.

点评 本题考查函数值符号的判断,是基础题,解题时要认真审题,注意函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex+ax-a(a∈R且a≠0).
(1)若f(0)=2,求实数a的值;并求此时f(x)的单调区间及最小值.
(2)若函数f(x)不存在零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1:mx+y+n=0过l2:x+y-1=0与l3:3x-y-7=0的交点(mn>0),则$\frac{1}{m}$+$\frac{2}{n}$的最小值(  )
A.6B.-6C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={0,1,2},集合B={x|x=ab,a∈A,b∈A},则集合B的真子集个数(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,已知B=60°,C=45°,BC=8,AD⊥BC于D,则AD长为4(3-$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α-π)tan(-α+\frac{3}{2}π)}{sin(-α-π)}$.若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,α是第三象限角,求f(α);
(2)若α、β为锐角,且cos(α+β)=$\frac{12}{13}$,cos(2α+β)=-$\frac{3}{5}$,求cosα 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=alnx-ax+1,当x∈(-2,0)时,函数f(x)的最小值为1,则a=(  )
A.-2B.2C.±1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是定义在R上的奇函数,当x≤0时,f(x)=$\frac{2x}{x-1}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在[2,6]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.f($\sqrt{x}$+1)=x+3,则f(x)=x2-2x+4,(x≥1).

查看答案和解析>>

同步练习册答案