精英家教网 > 高中数学 > 题目详情
6.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow p$=(a,sinB+sinC),$\overrightarrow q$=(sinA-sinB,b-c),且$\overrightarrow p$⊥$\overrightarrow q$
(1)求角C;
(2)若边c=$\sqrt{3}$,求△ABC面积的最大值.

分析 (1)利用向量垂直的坐标运算,正弦定理可得c2=a2+b2-ab,由余弦定理可得cosC=$\frac{1}{2}$,结合范围C∈(0°,180°),可求C的值.
(2)利用余弦定理,基本不等式可求(ab)max=3,利用三角形的面积公式即可计算得解.

解答 (本题满分为12分)
解:(1)∵向量$\overrightarrow p$=(a,sinB+sinC),$\overrightarrow q$=(sinA-sinB,b-c),且$\overrightarrow p$⊥$\overrightarrow q$,
∴a(sinA-sinB)+(b-c)(sinB+sinC),
∴c2=a2+b2-ab,
∴由余弦定理可得:cosC=$\frac{1}{2}$,
∵C∈(0°,180°),
∴C=60°…6分
(2)∵c2=3=a2+b2-ab≥2ab-ab=ab,
∴(ab)max=3,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{3\sqrt{3}}{4}$,即△ABC面积的最大值为$\frac{3\sqrt{3}}{4}$,当且仅当a=b=c时取得…12分

点评 本题主要考查了向量垂直的坐标运算,正弦定理,余弦定理,基本不等式,三角形的面积公式在解三角形中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{1}{3}{x^3}-4x+4$.
(1)求f(x)在x=1处的切线方程;
(2)函数y=f(x)-b有三个零点,求b的取值范围;
(3)求f(x)在[0,t]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从1、2、3、4、5、这五个数字中,随机抽取两个不同的数字,则这两个数字的和为偶数的概率为(  )
A.0.2B.0.4C.0.6D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知变量x和y满足关系y=2x+1,变量y与z正相关,下列结论中正确的是(  )
A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关
C.x与y负相关,x与z正相关D.x与y负相关,x与z负相关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}满足an+1(1-an)=1,a8=2,则a1=(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1:mx+y+n=0过l2:x+y-1=0与l3:3x-y-7=0的交点(mn>0),则$\frac{1}{m}$+$\frac{2}{n}$的最小值(  )
A.6B.-6C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若y=f(x)的导函数在区间[0,2π]上的图象如图所示,则f(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,已知B=60°,C=45°,BC=8,AD⊥BC于D,则AD长为4(3-$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球.
(1)用列表或画树状图的方法列出所有可能结果.       
(2)求事件A=“取出球的号码之和不小于6”的概率.     
(3)设第一次取出的球号码为x,第二次取出的球号码为y,求事件B=“点(x,y)落在直线 y=x+1上”的概率.

查看答案和解析>>

同步练习册答案