精英家教网 > 高中数学 > 题目详情
6.在数列{an}中,a1=1,当n≥2时,${a_n}=\frac{{3{a_{n-1}}}}{{{a_{n-1}}+3}}$
(1)求a2,a3,a4
(2)猜想数列{an}的通项an,并证明你的结论.

分析 (1)利用条件,代入计算,可求a2,a3,a4
(2)猜想数列{an}的通项an,证明数列{$\frac{1}{{a}_{n}}$}是首项为1,公差为$\frac{1}{3}$的等差数列,即可证明结论.

解答 解:(1)∵数列{an}中,a1=1,当n≥2时,${a_n}=\frac{{3{a_{n-1}}}}{{{a_{n-1}}+3}}$,
∴a2=$\frac{3}{4}$,a3=$\frac{3}{5}$,a4=$\frac{1}{2}$;
(2)猜想an=$\frac{3}{n+2}$.
∵当n≥2时,${a_n}=\frac{{3{a_{n-1}}}}{{{a_{n-1}}+3}}$,
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+$\frac{1}{3}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=$\frac{1}{3}$,
∴数列{$\frac{1}{{a}_{n}}$}是首项为1,公差为$\frac{1}{3}$的等差数列,
∴$\frac{1}{{a}_{n}}$=$\frac{n+2}{3}$,
∴an=$\frac{3}{n+2}$.

点评 本题考查等差数列的判定,考查数列的通项,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设i是虚数单位,若复数z满足z(1+i)=(1-i),则复数z的模|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$=(4,2),$\overrightarrow{b}$=(6,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则y=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列2,5,11,20,32,x,…中的x等于(  )
A.28B.32C.33D.47

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,A=60°,边$a=3\sqrt{3}$
(1)若c=3,求边b的长;
(2)当c=3时,若$\overrightarrow{CD}=\sqrt{3}\overrightarrow{DA}$,求∠DBC的大小;
(3)若$sinB=(\sqrt{3}-1)sinC$,求sinB•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在极坐标系中,点A(2,$\frac{π}{6}$)与B(2,-$\frac{π}{6}$)之间的距离为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{2}{x^2}$+x-2lnx(x>0).
(1)求f(x)的单调区间;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列所给对象不能构成集合的是(  )
A.一个平面内的所有点B.所有小于零的实数
C.某校高一(1)的高个子学生D.某一天到商场买过货物的顾客

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1)定义在(-1,1)上的奇函数f(x)为减函数,且f(1-a)+f(1-a2)>0,则实数a的取值范围为(1,$\sqrt{2}$).
(2)定义在[-2,2]上的偶函数g(x),当x≥0时,g(x)为减函数,若g(1-m)<g(m)成立,则m的取值范围为[-1,$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案