精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,平面ABCD是正三角形,ACBD的交点为M,又,点NCD中点.

1)求证:平面PAD

2)求点M到平面PBC的距离.

【答案】(1)证明见解析;(2)

【解析】

1)推导出ABD≌△BCD,从而MNAD,由此能证明MN∥平面PAD
2)设M到平面PBC的距离为h,由VM-PBC=VP-BMC,能求出点M到平面PBC的距离.

1是正三角形,所以,又

BD所在直线为线段AC的垂直平分线,

所以MAC的中点,

又点NCD中点,所以

平面PAD平面PAD

所以平面PAD

2)解:设M到平面PBC的距离为h,在中,

所以

中,,所以

中,,所以.

.即

解得

所以点M到平面PBC的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是偶函数.

(1)的值;

(2)证明:对任意实数,函数的图象与直线最多只有一个交点;

(3)若函数的图象有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,点是椭圆上的一个动点,且面积的最大值为.

1)求椭圆的方程;

2)过点作直线交椭圆两点,过点作直线的垂线交圆:于另一点.的面积为3,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某城市在20191月份至10月份各月最低温与最高温(℃)的数据表,已知该城市的各月最低温与最高温具有相关关系,根据该表,则下列结论错误的是( )

月份

1

2

3

4

5

6

7

8

9

10

最高温

5

9

9

11

17

24

27

30

31

21

最低温

1

7

17

19

23

25

10

A.最低温与最高温为正相关

B.每月最低温与最高温的平均值在前8个月逐月增加

C.月温差(最高温减最低温)的最大值出现在1

D.14月温差(最高温减最低温)相对于710月,波动性更大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且导函数的极值点是的零点,给出命题:,则存在,使得所有极值之和一定小于0,且是曲线的一条切线,则的取值范围是.则以上命题正确序号是_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,求不等式的解集;

2)若时,不等式恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在实数,使成立,则称的不动点.

1)当时,求的不动点;

2)若对于任何实数,函数恒有两相异的不动点,求实数的取值范围;

3)在(2)的条件下,若的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)若,求曲线的交点坐标;

2)过曲线上任一点作与夹角为30°的直线,交于点,且的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在圆 上,点在圆 上,则下列说法错误的是

A. 的取值范围为

B. 取值范围为

C. 的取值范围为

D. ,则实数的取值范围为

查看答案和解析>>

同步练习册答案