精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)若,求曲线的交点坐标;

2)过曲线上任一点作与夹角为30°的直线,交于点,且的最大值为,求的值.

【答案】1;(2.

【解析】

1)先求出曲线与直线的直角普通方程,再联立解方程组即可求出答案;

2)由题意设曲线的参数方程为为参数),再根据点到直线的距离公式,结合三角函数的性质求解即可.

解:(1)曲线的直角坐标方程为:

时,直线的普通方程为

解得

从而的交点坐标为

2的普通方程为的参数方程为为参数),

上任一点的距离为

时,的最大值为,所以

时,的最大值为,所以.

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】斐波那契数列011235813,…,是意大利数学家列昂纳多·斐波那契发明的,定义如下:.某同学设计了一个求解斐波那契数列前项和的程序框图,如图所示,若输出的值为232,则处理框和判断框中应该分别填入(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面ABCD是正三角形,ACBD的交点为M,又,点NCD中点.

1)求证:平面PAD

2)求点M到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的极值点的个数;

2)当时,若存在实数,使得,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:cm).经统计,高度均在区间[2050]内,将其按[2025),[2530),[3035),[3540),[4045),[4550]分成6组,制成如图所示的频率分布直方图,其中高度不低于40cm的树苗为优质树苗.

1)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下2×2列联表所示,将列联表补充完整,并根据列联表判断是否有99.9%的把握认为优质树苗与地区有关?

2)用样本估计总体的方式,从这批树苗中随机抽取4棵,期中优质树苗的棵数记为X,求X的分布列和数学期望.

甲地区

乙地区

合计

优质树苗

5

非优质树苗

25

合计

附:K2,其中na+b+c+d

PK2k0

0.025

0.010

0.005

0.001

k0

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若存在极大值,证明:

2)若关于的不等式在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年由于猪肉涨价太多,更多市民选择购买鸡肉、鸭肉、鱼肉等其它肉类.某天在市场中随机抽出100名市民调查,其中不买猪肉的人有30位,买了肉的人有90位,买猪肉且买其它肉的人共30位,则这一天该市只买猪肉的人数与全市人数的比值的估计值为____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为中边所对的角为,经测量已知.

1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;

2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记的面积分别为,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.

查看答案和解析>>

同步练习册答案