精英家教网 > 高中数学 > 题目详情
已知x、y满足约束条件
x-y+5≥5
x+y≥0
x≤3
,则z=2x+4y的最小值为
 
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.
解答: 解:由约束条件
x-y+5≥5
x+y≥0
x≤3
作出可行域如图,

化z=2x+4y为y=-
1
2
x+
z
4

由图可知,当直线y=-
1
2
x+
z
4
过A(3,-3)时z有最小值,等于2×3+4×(-3)=-6.
故答案为:-6.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=log2|x|的图象(  )
A、关于直线y=-x对称
B、关于原点对称
C、关于y轴对称
D、关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx+2>0的解集是{x|-
1
2
<x<
1
3
},则b-a的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1+x2
是定义在(-1,1)上的函数.
(Ⅰ)用定义法证明函数f(x)在(-1,1)上是增函数;
(Ⅱ)解不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,当f(x)=-(x+2)2,当-1≤x<3时.f(x)=x,则f(1)+f(2)+f(3)+…+f(2015)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰直角△ABC中,∠ABC=90°,腰长为2,P为△ABC外一点,∠BPC=90°.
(1)若PC=
3
,求PA长;
(2)若∠APB=30°,求tan∠PBA.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足不等式
x+y≤1
x+1≥0
x-y≤1
,则2x+y的最小值为(  )
A、-4B、3C、4D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(
x
3
+φ)(0<φ<2π)在区间(-π,π)上单调递增,则实数φ的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三个数0.993.3,log3π,log20.8的大小关系为(  )
A、log3π<0.993.3<log20.8
B、log20.8<log3π<0.993.3
C、0.993.3<log20.8 l<og3π
D、log20.8<0.993.3<log3π

查看答案和解析>>

同步练习册答案