已知定义在R上的奇函数f(x)满足f(x-4)=-f(x).
(1)求f(2 012)的值;
(2)求证:函数f(x)的图像关于直线x=2对称;
(3)若f(x)在区间[0,2]上是增函数,试比较f(-25),f(11),f(80)的大小.
(1)0 (2)见解析 (3) f(-25)<f(80)<f(11)
【解析】解:(1)因为f(x-4)=-f(x),
所以f(x)=-f(x-4)=-{-f[(x-4)-4]}=f(x-8),
知函数f(x)的周期为T=8.
所以f(2 012)=f(251×8+4)=f(4)=-f(0).
又f(x)为定义在R上的奇函数.
所以f(0)=0,故f(2 012)=0.
(2)证明:因为f(x)=-f(x-4),
所以f(x+2)=-f[(x+2)-4]=-f(x-2)=f(2-x),
知函数f(x)的图像关于直线x=2对称.
(3)由(1)知f(x)是以8为周期的周期函数,
所以f(-25)=f[(-3)×8-1]=f(-1),
f(11)=f(8+3)=f(3)=-f(-1)=f(1),
f(80)=f(10×8+0)=f(0).
又f(x)在[0,2]上是增函数,且f(x)在R上为奇函数,所以f(x)在[-2,2]上为增函数,则有f(-1)<f(0)<f(1),
即f(-25)<f(80)<f(11).
科目:高中数学 来源: 题型:
1 |
b |
1 |
a |
查看答案和解析>>
科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题
已知定义在R上的奇函数,满足,且在区间[0,2]上是增函
数,则( ).
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题
已知定义在R上的奇函数,满足,且在区间[0,1]上是增函
数,若方程在区间上有四个不同的根,则
( )
(A) (B) (C) (D)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com