精英家教网 > 高中数学 > 题目详情
的直径,点上的动点(点不与重合),过动点的直线垂直于所在的平面,分别是的中点,则下列结论错误的是  
A.直线平面B.直线平面
C.D.
D
解:利用直径所对的圆周角为直角,以及线面垂直的性质定理,可以判定,正确的命题为直线平面和 直线平面
以及,而选项D不成立。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,已知平面平面分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,点的重心,中点,

(Ⅰ)当时,求证://平面
(Ⅱ)若直线所成角为,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面
是线段上的点,是线段上的点,且

(Ⅰ)当时,证明平面
(Ⅱ)是否存在实数,使异面直线所成的角为?若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,侧面ABB1A1是菱形,且, M是A1B1的中点,

(1)求证:平面ABC;
(2)求二面角A1—BB­1—C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在三棱锥中,平面平面的中点.
(1) 证明:
(2) 求所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥中,底面是菱形,,底面的中点,中点。

(1)求证:∥平面
(2)求证:平面⊥平面
(3)求与平面所成的角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面

(Ⅰ)求证:
(Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,平面,底面是直角梯形,中点.

(1) 求证:平面PDC平面PAD;
(2) 求证:BE∥平面PAD;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

同步练习册答案