精英家教网 > 高中数学 > 题目详情
(本题满分14分)如图,已知平面平面分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,点的重心,中点,

(Ⅰ)当时,求证://平面
(Ⅱ)若直线所成角为,试求二面角的余弦值.
(Ⅰ)见解析;(Ⅱ)二面角的余弦值.
(1)只须证:连接AG并延长交CE于P点,连接PB,PD,易证NPDF为平行四边形,然后根据平行线分分段成比例关系证DM//PF即可.
(2) 由于本小题建系比较容易,所以易采用空间向量法求二面角即可.先求出二面角两个面的法向量,然后根据法向量的夹角与二面角相等或互补进行计算.
(Ⅰ)连延长交

因为点的重心,所以
,所以,所以//
因为////,所以平面//平面
分别是棱长为1与2的正三角形,
中点,中点, //,又//
所以//,得四点共面
//平面
(Ⅱ)平面平面,易得平面平面
为原点,为x轴,为y轴,为z轴建立空间直角坐标系,
,设


因为所成角为,所以

设平面的法向量,则,取
的法向量
所以二面角的余弦值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题8分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,
PA=AB=2,M, N分别为PA, BC的中点.

(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)求MN与平面PAC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,MN分别是A1B1A1A的中点.

(1)求的长;
(2)求的值;
(3)求证:A1BC1M(14分).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,
 
G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,分别是的中点,
的中点,

(Ⅰ)求证:
(Ⅱ)求二面角的大小。
(Ⅲ)求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示, 四棱锥PABCD的底面是边长为1的正方形,PA^CDPA = 1, PD=,EPD上一点,PE = 2ED

(Ⅰ)求证:PA^平面ABCD
(Ⅱ)求二面角D-ACE的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直三棱柱中,中点.

(1)求证://平面
(2)求点到平面的距离;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD,PA⊥平面ABCD于A,M,N分别为AB,PC的中点
(1)求证:MN⊥AB;
(2)若平面PDC与平面ABCD所成的二面角为θ,能否确定θ,使直线MN是异面直线AB与PC的公垂线?若能确定,求出的值;若不能确定,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的直径,点上的动点(点不与重合),过动点的直线垂直于所在的平面,分别是的中点,则下列结论错误的是  
A.直线平面B.直线平面
C.D.

查看答案和解析>>

同步练习册答案