精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,
 
G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.
(Ⅰ)证明:见解析;(Ⅱ)证明:见解析;(Ⅲ)G点到平面PEC的距离为
本试题主要考查了线面的位置关系的运用,点到面的距离的求解。
线面平行的判定和线面垂直的判定的综合运用。
(1)由于CD⊥AD,CD⊥PA    ∴CD⊥平面PAD  ∴CD⊥AG又PD⊥AG,从而由判定定理得到结论。
(2)作EF⊥PC于F,因面PEC⊥面PCD 
∴EF⊥平面PCD,又由(Ⅰ)知AG⊥平面PCD,故EF∥AG可知线面平行。
(3)由AG∥平面PEC知A、G两点到平面PEC的距离相等
由(Ⅱ)知A、E、F、G四点共面,又AECD 
AE∥平面PCD
∴ AE∥GF,∴ 四边形AEFG为平行四边形,∴ AE=GF,然后利用转换顶点得到体积的求解。
解(Ⅰ)


证明:∵CD⊥AD,CD⊥PA    
∴CD⊥平面PAD  ∴CD⊥AG
又PD⊥AG     
∴AG⊥平面PCD          …………4分
(Ⅱ)证明:作EF⊥PC于F,因面PEC⊥面PCD 
∴EF⊥平面PCD,又由(Ⅰ)知AG⊥平面PCD 
∴EF∥AG,又AG 面PEC,EF 面PEC,
∴AG∥平面PEC    ………………7分
(Ⅲ)由AG∥平面PEC知A、G两点到平面PEC的距离相等
由(Ⅱ)知A、E、F、G四点共面,又AECD 
AE∥平面PCD
AEGF,∴ 四边形AEFG为平行四边形,∴ AEGF     ……………8分



 
PAAB=4, GPD中点,FG   CD

FG=2       ∴ AEFG=2                   ………………………9分
∴                ………………………10分
又EF⊥PC,EF=AG
        ………………………11分
,∴,即,∴
∴ G点到平面PEC的距离为.              ………………………12分网
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.

(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥中,面是正三角形,

(Ⅰ)求证:
(Ⅱ)若异面直线所成角的余弦值为,求二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,已知平面平面分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,点的重心,中点,

(Ⅰ)当时,求证://平面
(Ⅱ)若直线所成角为,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面
是线段上的点,是线段上的点,且

(Ⅰ)当时,证明平面
(Ⅱ)是否存在实数,使异面直线所成的角为?若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥中,底面是菱形,,底面的中点,中点。

(1)求证:∥平面
(2)求证:平面⊥平面
(3)求与平面所成的角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,平面,底面是直角梯形,中点.

(1) 求证:平面PDC平面PAD;
(2) 求证:BE∥平面PAD;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线平面,直线平面,则下列四个命题中正确的是 (  )
;③;④
A.②④B.①②C.③④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,E、F分别是正方形SD1DD2的边D1D、DD2的中点沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作D。给出下列位置关系:①SD⊥面DEF;  ②SE⊥面DEF; ③DF⊥SE;  ④EF⊥面SED,其中成立的有           

查看答案和解析>>

同步练习册答案