精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在三棱锥中,面是正三角形,

(Ⅰ)求证:
(Ⅱ)若异面直线所成角的余弦值为,求二面角的大小;
(Ⅰ)证明见解析
(Ⅱ)二面角的大小为
本试题主要是考查了线线垂直的证明,以及二面角的平面角的求解的综合运用。
(1)利用先棉农垂直的性质定理得到线线垂直的证明即可。
(2)建立空间直角坐标系,然后表示出平面的法向量和法向量的夹角,即为二面角的平面角的求解。
解:(Ⅰ)证明:∵ 面⊥面,且面

又∵
.                                ………6分
(Ⅱ)取的中点,连接,则,有,以为原点建立坐标系如图所示.

,,则有
,根据已知
,即,解得
根据,
可得平面的法向量
而平面的法向量,于是

因此,二面角的大小为.          ………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,几何体是四棱锥,△为正三角形,.
(1)求证:
(2)若∠,M为线段AE的中点,求证:∥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,MN分别是A1B1A1A的中点.

(1)求的长;
(2)求的值;
(3)求证:A1BC1M(14分).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在三棱柱中,侧面底面,,,且中点.

(I)证明:平面;
(II)求直线与平面所成角的正弦值;
(III)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,
 
G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,分别是的中点,
的中点,

(Ⅰ)求证:
(Ⅱ)求二面角的大小。
(Ⅲ)求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直三棱柱中,中点.

(1)求证://平面
(2)求点到平面的距离;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是两条直线,α,β是两个平面.有以下命题:
①m,n相交且都在平面α,β外,m∥α, m∥β , n∥α, n∥β ,则α∥β;
②若m∥α, m∥β , 则α∥β;
③若m∥α, n∥β , m∥n,则α∥β.
其中正确命题的个数是(     )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,是两个不同的平面,是两条不重合的直线,下列命题中正确的是(  )
A.若,则.
B.若,则.
C.若,且,则.
D.若,则.

查看答案和解析>>

同步练习册答案