精英家教网 > 高中数学 > 题目详情
正四面体ABCD,线段AB平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,则线段AB与EF在平面上的射影所成角余弦值的范围是(   )
A.[0,]B.[,1]C.[,1]D.[]
B

试题分析:
如图,取AC中点为G,结合已知得GFAB,则线段AB、EF在平面上的射影所成角等于GF与EF在平面上的射影所成角,在正四面体中,ABCD,又GECD,所以GEGF,所以,当四面体绕AB转动时,因为GF平面,GE与GF的垂直性保持不变,显然,当CD与平面垂直时,GE在平面上的射影长最短为0,此时EF在平面上的射影的长取得最小值,当CD与平面平行时,GE在平面上的射影长最长为取得最大值,所以射影长的取值范围是 [],而GF在平面上的射影长为定值,所以AB与EF在平面上的射影所成角余弦值的范围是[,1].故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是线段PB的中点.

(1)求证:平面PAC;
(2)求证:AQ//平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN平面ABCD,E,F分别为MA,DC的中点,求证:

(1)EF//平面MNCB;
(2)平面MAC平面BND.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为菱形,,Q为AD的中点.

(1)若PA=PD,求证:平面平面PAD;
(2)点M在线段上,PM=tPC,试确定实数t的值,使PA//平面MQB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,,.M为PB的中点.

(1)求证:PD//平面AMC;
(2)求锐二面角B-AC-M的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分别为DC、BC的中点.

(1)求证:平面FGH∥平面BDE;
(2)求证:平面ACF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知不同直线和不同平面,给出下列命题:
  ②  ③异面 
 其中错误的命题有(  )个
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示直线,表示不同的平面,则下列命题中正确的是
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案