精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN平面ABCD,E,F分别为MA,DC的中点,求证:

(1)EF//平面MNCB;
(2)平面MAC平面BND.
(1) (2)见解析

试题分析:(1)取的中点,连接,欲证 平面 ,只要证 
只要证四边形 是平行四边形即可,事实上,由于 分别是的中点,易知 另一方面又有 ,所以FG与ME平行且相等,四边形是平行四边形,问题得证.
(2) 连接,欲证平面,只要证平面,即证与平面 内的两条相交直线 、都垂直;由菱形易知 ;另外,由平面平面
及矩形易证平面,进而有,所以问题得证.
试题解析:
证明:(1)取的中点,连接
因为
又因为分别为的中点,,          2分
所以平行且相等,所以四边形是平行四边形,
所以,                               4分
平面平面
所以平面                            6分
(2)连接,因为四边形是矩形,
所以,又因为平面平面
所以平面                              8分
所以
因为四边形是菱形,所以
因为,所以平面                      10分
又因为平面
所以平面                              12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的侧棱平面为等边三角形,侧面是正方形,的中点,是棱上的点.

(1)若是棱中点时,求证:平面;
(2)当时,求正方形的边长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,平面.以为邻边作平行
四边形,连接
(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体
(1)在正方体的所有棱中,哪些棱所在直线与直线异面
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在侧棱垂直底面的四棱柱ABCDA1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.

(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF.
(2)求BC1与平面B1C1EF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知棱长为l的正方体中,E,F,M分别是AB、AD、的中点,又P、Q分别在线段上,且,设面面MPQ=,则下列结论中不成立的是(    )

A.面ABCD
B.AC
C.面MEF与面MPQ不垂直
D.当x变化时,不是定直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四面体ABCD,线段AB平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,则线段AB与EF在平面上的射影所成角余弦值的范围是(   )
A.[0,]B.[,1]C.[,1]D.[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,梯形中,,,, ,将沿对角线折起.设折起后点的位置为,并且平面平面.给出下面四个命题:
;②三棱锥的体积为;③平面;④平面平面.

其中正确命题的序号是(  )
A.①②B.③④C.①③D.②④

查看答案和解析>>

同步练习册答案