【题目】以椭圆的离心率为,以其四个顶点为顶点的四边形的面积等于.
1求椭圆的标准方程;
2过原点且斜率不为0的直线与椭圆交于两点,是椭圆的右顶点,直线分别与轴交于点,问:以为直径的圆是否恒过轴上的定点?若恒过轴上的定点,请求出该定点的坐标;若不恒过轴上的定点,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知是自然对数的底数,函数与的定义域都是.
(1)求函数在点处的切线方程;
(2)求证:函数只有一个零点,且;
(3)用表示,的最小值,设,,若函数在上为增函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,实数,函数,函数.
(Ⅰ)令,当时,试讨论函数在其定义域内的单调性;
(Ⅱ)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立?若存在,求出实数的取值集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°,PD⊥底面ABCD,PD=DC=2,E,F,G分别是AB,PB,CD的中点.
(1)求证:AC⊥PB;
(2)求证:GF∥平面PAD;
(3)求点G到平面PAB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆与轴交于、两点,为圆上一点.椭圆以、为焦点且过点.
(Ⅰ)当点坐标为时,求的值及椭圆方程;
(Ⅱ)若直线与(Ⅰ)中所求的椭圆交于、不同的两点,且点,,求直线在轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三个村庄A,B,C构成一个三角形,且AB=5千米,BC=12千米,AC=13千米.为了方便市民生活,现在△ABC内任取一点M建一大型生活超市,则M到A,B,C的距离都不小于2千米的概率为
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com