精英家教网 > 高中数学 > 题目详情

【题目】已知三个村庄ABC构成一个三角形,且AB=5千米,BC=12千米,AC=13千米.为了方便市民生活,现在ABC内任取一点M建一大型生活超市,则MABC的距离都不小于2千米的概率为

A. B. C. D.

【答案】C

【解析】

根据条件作出对应的图象,求出对应的面积,根据几何概型的概率公式进行计算即可.

解:在△ABC中,AB5BC12AC13,则△ABC为直角三角形,且∠B为直角。

则△ABC的面积S

若在三角形ABC内任取一点,则该点到三个定点ABC的距离不小于2

则该点位于阴影部分,

则三个小扇形的圆心角转化为180°,半径为2,则对应的面积之和为S

则阴影部分的面积S

则对应的概率P

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以椭圆的离心率为,以其四个顶点为顶点的四边形的面积等于

1求椭圆的标准方程;

2过原点且斜率不为0的直线与椭圆交于两点,是椭圆的右顶点,直线分别与轴交于点,问:以为直径的圆是否恒过轴上的定点?若恒过轴上的定点,请求出该定点的坐标;若不恒过轴上的定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆锥的底面的直径,是圆上异于的任意一点,为直径的圆与的另一个交点为的中点.现给出以下结论:

为直角三角形

②平面平面

③平面必与圆锥的某条母线平行

其中正确结论的个数是

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

(1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形的面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)求曲线C的参数方程和直线的直角坐标方程;

(2)若直线轴和y轴分别交于AB两点,P为曲线C上的动点,求PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知动点P与两定点F1(﹣10)、F210)的连线的斜率之积为,求动点P的轨迹方程.

2)已知双曲线的渐近线方程为y±x,且与椭圆1有公共焦点,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.

C的普通方程和直线的倾斜角;

设点(0,2),交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线 上,与直线 相切,且截直线 所得弦长为6

(Ⅰ)求圆的方程

(Ⅱ)过点是否存在直线,使以被圆截得弦为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为

(Ⅰ)分别求曲线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设直线交曲线 两点,交曲线 两点,求的长.

查看答案和解析>>

同步练习册答案