精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心在直线 上,与直线 相切,且截直线 所得弦长为6

(Ⅰ)求圆的方程

(Ⅱ)过点是否存在直线,使以被圆截得弦为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.

【答案】(1)(2)不存在直线.

【解析】试题分析:()由圆的圆心在直线 上,故可设圆心坐标为,再根据圆与直线相切,截直线 所得弦长为6,列出等式方程求解即可;2由题意过的直线斜率一定存在设直线的方程为为直径的圆过原点,则 联立直线与圆的方程消去得到关于的一元二次方程利用韦达定理即可求出.

试题解析:)设圆心

∵圆与直线相切

截直线 所得弦长为6

∴圆到直线的距离为

∴圆心

∴圆的方程

①当直线的斜率不存在时, 不符合题意

②设

被圆截得弦为直径的圆经过原点

联立直线与圆的方程

化简可得

无解

∴不存在直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:实数x满足x2-5ax+4a2<0,其中a>0,命题q:实数x满足

(1)若a=1,且pq为真,求实数x的取值范围;

(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点Q作斜率不为零的直线交曲线E于点

(I)求曲线E的方程

(II)求证:

(III)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图椭圆的上下顶点为AB,直线 ,点P是椭圆上异于点AB的任意一点,连结AP并延长交直线于点N,连结BP并延长交直线于点M,设APBP所在直线的斜率分别为,若椭圆的离心率为,且过点,(1)求的值,并求最小值;(2)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点坐标;若不过定点,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:

(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;

(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;

(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:

等级

一等品

二等品

三等品

重量(

按分层抽样抽取10只,再随机抽取3只品尝,记为抽到二等品的数量,求抽到二级品的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= +lg(3x+1)的定义域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)用定义证明函数f(x)在(﹣∞,+∞)上为减函数;
(2)若x∈[1,2],求函数f(x)的值域;
(3)若g(x)= ,且当x∈[1,2]时g(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三共有800名学生,为了解学生3月月考生物测试情况,根据男女学生人数差异较大,从中随机抽取了200名学生,记录他们的分数,并整理得如图频率分布直方图.

(1)若成绩不低于60分的为及格,成绩不低于80分的为优秀,试估计总体中合格的有多少人?优秀的有多少人?

(2)已知样本中有一半的女生分数不小于80,且样本中不低于80分的男女生人数之比2:3,试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4—4:坐标系与参数方程

在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.

1)求圆C的极坐标方程;

2)直线的极坐标方程是,射线与圆C的交点为OP,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

同步练习册答案