精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:实数x满足x2-5ax+4a2<0,其中a>0,命题q:实数x满足

(1)若a=1,且pq为真,求实数x的取值范围;

(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

【答案】(1);(2)

【解析】试题分析:(1)命题p:实数x满足x2-5ax+4a2<0,解集A=(a,4a).命题q:实数x满足 解集B=(2,4].a=1,且pq为真,求A∩B即可得出.
(2)¬p:(-∞,a][4a,+∞).¬q:(-∞,2](4,+∞).利用¬p是¬q的充分不必要条件,即可得出.

试题解析:

(1)命题p:实数x满足x2-5ax+4a2<0,其中a>0,a<x<4a,解集A=(a,4a),命题q:实数x满足,解得2<x≤4.解集B=(2,4],a=1,且p∧q为真,则A∩B=(1,4)∩(2,4]=(2,4),∴实数x的取值范围是(2,4).

(2)¬p:(-∞,a]∪[4a,+∞),¬q:(-∞,2]∪(4,+∞).

若¬p是¬q的充分不必要条件,则,解得1≤a≤2.

又当a=1时不成立∴实数a的取值范围是(1,2].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (m∈Z)为偶函数,且在(0,+∞)上为增函数.
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数f(x)=1+a( x+( x , 若函数f(x)在[﹣2,1]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, ,顶点在底面 上的射影恰为点 ,且.

1)求棱 所成的角的大小;

2)在棱 上确定一点,使,并求出二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组对象不能构成一个集合的是(
A.不超过20的非负实数
B.方程x2﹣9=0在实数范围内的解
C. 的近似值的全体
D.临川十中2016年在校身高超过170厘米的同学的全体

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为,已知.

(1)求数列的通项公式;

(2)求数列的前项和为

(3)当为何值时, 最大,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ (x≠0).
(1)判断并证明函数在其定义域上的奇偶性;
(2)判断并证明函数在(2,+∞)上的单调性;
(3)解不等式f(2x2+5x+8)+f(x﹣3﹣x2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口船舶停靠的方案是先到先停.

(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.

(2)根据以往经验,甲船将于早上到达,乙船将于早上到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记 都是之间的均匀随机数,用计算机做了100次试验,得到的结果有12次满足,有6次满足

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线 上,与直线 相切,且截直线 所得弦长为6

(Ⅰ)求圆的方程

(Ⅱ)过点是否存在直线,使以被圆截得弦为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案