精英家教网 > 高中数学 > 题目详情

【题目】定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数f(x)=1+a( x+( x , 若函数f(x)在[﹣2,1]上是以3为上界的有界函数,求实数a的取值范围.

【答案】解:由题意知,|f(x)|≤3在[﹣2,1]上恒成立.
所以﹣3≤f(x)≤3,即
在[﹣2,1]上恒成立.

设2x=t, ,由x∈[﹣2,1]得
则h(t)在 上的最大值为
p(t)在 上的最小值为
所以实数a的取值范围为
【解析】利用定义得到|f(x)|≤3在[﹣2,1]上恒成立.化简为 在[﹣2,1]上恒成立.设2x=t, ,求解不等式两端函数的最值,即可得到实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)如图,在四棱锥中,底面是正方形,侧面底面,且,设分别为的中点.

(1)求证:平面∥平面

(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的顶点为坐标原点O,焦点F在轴正半轴上,准线与圆相切.

)求抛物线的方程;

)已知直线和抛物线交于点,命题若直线过定点(0,1),则

请判断命题的真假,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1F2,且|F1F2|,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3∶7.

(1)求这两曲线的方程;

(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=x2+bx+c满足f(2)=f(﹣2),且函数的f(x)的一个根为1.
(1)求函数f(x)的解析式;
(2)对任意的x∈[ ,+∞),方程4mf(x)+f(x﹣1)=4﹣4m有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年9月16日05时,第19号台风“杜苏芮”的中心位于甲地,它以每小时30千米的速度向西偏北的方向移动,距台风中心千米以内的地区都将受到影响,若16日08时到17日08时,距甲地正西方向900千米的乙地恰好受台风影响,则的值分别为(附: )( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为的五批疫苗,供全市所辖的三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.

(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;

(2)记三个区选择的疫苗批号的中位数为,求 的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:实数x满足x2-5ax+4a2<0,其中a>0,命题q:实数x满足

(1)若a=1,且pq为真,求实数x的取值范围;

(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点Q作斜率不为零的直线交曲线E于点

(I)求曲线E的方程

(II)求证:

(III)求面积的最大值.

查看答案和解析>>

同步练习册答案