精英家教网 > 高中数学 > 题目详情
记命题p为“若α=β,则cosα=cosβ”,则在命题p及其逆命题、否命题、逆否命题中,真命题的个数是
 
分析:根据四种命题的定义以及命题真假之间的关系进行判断即可.
解答:解:若α=β,则cosα=cosβ正确,∴原命题p正确,则逆否命题也正确.
逆命题为:若cosα=cosβ,则α=β,不正确,比如当α=
π
3
,β=-
π
3
,满足cosα=cosβ,但α=β不成立,
∴逆命题为假命题,则否命题也为假命题.
故答案为:2
点评:本题主要考查四种命题之间的关系以及逆否命题的等价性问题,利用逆否命题的等价性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-2ax+b,f(-1)=-8.对?x∈R,都有f(x)≥f(-1)成立;记集合A={x|f(x)>0},B={x||x-t|≤1}.
(I)当t=1时,求(CRA)∪B.
(II)设命题P:A∩B≠空集,若¬P为真命题,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①f(a)f(b)<0 为函数f(x)在区间(a,b)内存在零点的必要不充分条件;
②从总体中抽取的样本(x1,y1),(x2,y2),…,(xa,ya),若记
.
X
=
1
n
∑xi
.
Y
=
1
n
∑yi,则回归直线
?
y
=bx+a
必过点(
.
X
.
Y
);
③设点P是△ABC所在平面内的一点,且
BC
+
BA
=2
BP
,则P为线段AC的中点;
④若空间两点A(1,2,-1),B(2,0,m)的距离为
14
,则m=2.
其中真命题的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①命题P:
x-2
x2+2x-3
≤0
;则¬P命题是;
x-2
x2+2x-3
>0

②(1+kx210(k为正整数)的展开式中,x16的系数小于90,则k的值为1;
③从总体中抽取的样本(x1,y1),(x2,y2)…,(xn,yn).若记
.
x
=
1
n
n
i=1
xi
.
y
=
1
n
n
i=1
yi
,则回归直线
y
=bx+a必过点(
.
x
.
y
);
④过双曲线x2-
y2
4
=1
的右焦点作直线交双曲线于A、B两点,若弦长|AB|=8,则这样的直线恰好有3条;其中正确的序号是
②③④
②③④
(把你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+a
x+b
图象上有两个关于原点对称的不动点,求实数a,b应满足的条件;
(2)设点P(x,y)到直线y=x的距离d=
|x-y|
2
.在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A1,A2,P为函数f(x)图象上的另一点,其纵坐标yP>3,求点P到直线A1A2距离的最小值及取得最小值时点P的坐标.
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明;若不正确,请举一反例.若地方不够,可答在试卷的反面.

查看答案和解析>>

同步练习册答案