分析 (1)由PO⊥底面ABCD可得PO⊥OB,由正三角形的性质得出AC⊥OB,于是OB⊥平面PAC,故而OB⊥PA;
(2)由直角三角形性质可得OD=AO=1,故△AOD为等边三角形,于是∠OAD=∠BAC=60°,故OD∥AB,从而得出DO∥AB,于是OD∥平面PAB;
(3)过D做DF垂直AC于F,连接PF,则可证DF⊥平面PAC,于是∠DPF为所求角,计算DF,PF得出tan∠DPF.
解答 证明:(1)∵三角形ABC为正三角形,O为AC的中点.![]()
∴BO⊥AC,
∵PO⊥平面ABCD,BO?平面ABCD,
∴BO⊥PO,
又PO?平面PAC,AC?平面PAC,PO∩AC=O,
∴BO⊥平面PAC,∵PA?平面PAC,
∴PA⊥BO.
(2)∵AD⊥CD,O是AC的中点,
∴OD=AO=$\frac{1}{2}$AC=1,又AD=1,
∴△AOD是等边三角形,又△ABC是等边三角形,
∴∠OAD=∠BAC=60°,
∴DO∥AB,又AB?平面PAB,DO?平面PAB,
∴DO∥平面PAB.
(3)过D做DF垂直AC于F,连接PF.
∵PO⊥平面ABCD,DF?平面ABCD,
∴PO⊥DF,又DO⊥AC,PO?平面PAC,AC?平面PAC,PO∩AC=O,
∴DF⊥平面PAC,∴∠DPF为直线PD与平面PAC所成角.
∵CD=$\sqrt{A{C}^{2}-A{D}^{2}}$=$\sqrt{3}$,∴DF=$\frac{AD•CD}{AC}$=$\frac{\sqrt{3}}{2}$,∴PF=$\sqrt{P{D}^{2}-D{F}^{2}}$=$\frac{\sqrt{21}}{2}$,
∴tan∠DPF=$\frac{DF}{PF}$=$\frac{\sqrt{7}}{7}$.
即直线PD与平面PAC所成角的正切值为$\frac{{\sqrt{7}}}{7}$.
点评 本题考查了线面平行,线面垂直的判定,线面角的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 4 | C. | 8 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com