分析 利用相似三角形的判定与性质得出△ADC∽△ACP,则可求AC2=AD×AP=AD×(AD+DP),进而得出答案.
解答 解:∵∠PDC+∠ADC=180°,∠PCA+∠ACB=180°,∠ACB=∠PDC=∠ABC,
∴∠ADC=∠PCA,
又∵∠CAD=∠PAC,
∴△ADC∽△ACP,
∴$\frac{AD}{AC}$=$\frac{AC}{AP}$,
∴AC2=AD×AP=AD×(AD+DP),
∵AB=AC=6,PD=9,
∴36=AD×(AD+9),解得:AD=3或-12(舍).
故答案为:3.
点评 此题主要考查了相似三角形的判定与性质以及圆周角定理和圆内接四边形的性质等知识,得出△ADC∽△ACP是解题关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 转速x/(rad/s) | 16 | 14 | 12 | 8 |
| 每小时生产有缺点的零件数y/件 | 11 | 9 | 8 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 36π | B. | 48π | C. | 56π | D. | 64π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | -2 | -1 | 0 | 1 | 2 |
| y | 5 | 4 | 2 | 2 | 1 |
| A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com