| A. | 36π | B. | 48π | C. | 56π | D. | 64π |
分析 根据三视图知几何体是三棱锥为棱长为4的正方体一部分,画出直观图,由正方体的性质求出球心O到平面ABC的距离d、边AB和AC的值,在△ABC中,由余弦定理求出cos∠ACB后,求出∠ACB和sin∠ACB,由正弦定理求出△ABC的外接圆的半径r,由勾股定理求出球O的半径,由球的表面积公式求解.
解答
解:根据三视图知几何体是:
三棱锥D-ABC为棱长为4的正方体一部分,直观图如图所示:
∵该多面体的所有顶点都在球O,且球心O是正方体的中心,
∴由正方体的性质得,球心O到平面ABC的距离d=2,
由正方体的性质可得,
AB=BD=$\sqrt{{4}^{2}+{2}^{2}}$=$2\sqrt{5}$,AC=$4\sqrt{2}$,
设△ABC的外接圆的半径为r,
在△ABC中,由余弦定理得,
cos∠ACB=$\frac{A{C}^{2}+B{C}^{2}-A{B}^{2}}{2•AC•BC}$=$\frac{32+4-20}{2×4\sqrt{2}×2}$=$\frac{\sqrt{2}}{2}$,
∴∠ACB=45°,则sin∠ACB=$\frac{\sqrt{2}}{2}$,
由正弦定理可得,2r=$\frac{AB}{sin∠ACB}$=$\frac{2\sqrt{5}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{10}$,则r=$\sqrt{10}$,
即球O的半径R=$\sqrt{{r}^{2}+{d}^{2}}$=$\sqrt{14}$,
∴球O的表面积S=4πR2=56π,
故选:C.
点评 本题考查三视图求几何体外接球的表面积,正弦定理、余弦定理,以及正方体的性质,结合三视图和对应的正方体复原几何体是解题的关键,考查空间想象能力.
科目:高中数学 来源: 题型:选择题
| A. | -6 | B. | -8 | C. | -9 | D. | -12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 收入x (万元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
| 支出y (万元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
| A. | 11.4万元 | B. | 11.8万元 | C. | 15.2万元 | D. | 15.6万元 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 4 | 5 | 6 | 7 | 8 |
| y | 5 | 4 | 3 | 2 | 1 |
| A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com