精英家教网 > 高中数学 > 题目详情
2.已知二次函数f(x)=ax2+bx(a≠0,a,b为常数)满足f(1-x)=f(1+x),且方程f(x)=2x有两个相等实根;设g(x)=$\frac{1}{3}$x3-x-f(x).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求g(x)在[0,3]上的最值.

分析 (Ⅰ)根据函数的对称轴得到-$\frac{b}{2a}$=1,根据方程f(x)=2x有两个相等实根,求出b的值,从而求出a的值,求出函数的表达式;
(Ⅱ)求出g(x)的解析式,根据函数的单调性求出函数的单调区间,从而求出函数在闭区间上的最值即可.

解答 解:(Ⅰ)二次函数f(x)=ax2+bx(a≠0,a,b为常数)满足f(1-x)=f(1+x),
故对称轴x=-$\frac{b}{2a}$=1①,
方程f(x)=2x有两个相等实根,即ax2+(b-2)x=0有两个相等实根,
故△=(b-2)2=0,解得:b=2,
将b=2代入①,解得:a=-1,
故f(x)=-x2+2x;
(Ⅱ)g(x)=$\frac{1}{3}$x3-x-f(x)=$\frac{1}{3}$x3+x2-3x,
g′(x)=x2+2x-3=(x+3)(x-1),
令g′(x)>0,解得:x>1或x<-3,
令g′(x)<0,解得:-3<x<1,
∴g(x)在(-∞,-3)递增,在(-3,1)递减,在(1,+∞)递增,
∴g(x)在[0,1)递减,在(1,3]递增,
∴g(x)最小值=g(1)=-$\frac{5}{3}$,而g(0)=0,g(3)=9,故g(x)最大值=9.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,网格纸上小正方形的边长为1,粗线画出的是某个多面体的三视图,若该多面体的所有顶点都在球O表面上,则球O的表面积是(  )
A.36πB.48πC.56πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某单位为了了解用电量y(度)与气温x(度)之间的关系,随机统计了某4天的用电量与当天气温,并制作了如下的对照表.
气温x(度)181310-1
用电量y(度)24343864
由表中数据,得回归直线方程$\hat y=\hat bx+\hat a$,若$\hat b=-2$,则$\hat a$=60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足($\overrightarrow{a}$-$\sqrt{2}$$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果一个正方形的四个项点都在三角形的三边上,则该正方形是该三角形的内接正方形,那么面积为2的锐角△ABC的内接正方形面积的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.几何体的俯视图为一边长为2的正三角形,则该几何体的各个面中,面积最大的面的面积为(  )
A.3B.$\sqrt{6}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:函数f(x)=$\sqrt{4-x}$+lg(3x-9)的定义域为A,集合B={x|x-a<0,a∈R}.
(1)求:集合A;
(2)求:A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从一堆产品(其中正品与次品数均多于2件)中任取2件,观察正品件数和次品件数,则下列每对事件中,是对立事件的是(  )
A.恰好有1件次品和恰好有两件次品B.至少有1件次品和全是次品
C.至少有1件次品和全是正品D.至少有1件正品和至少有1件次品

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,AB=2,AC=$\frac{2}{3}$,∠BAC=60°,设D为△ABC所在平面内一点,$\overrightarrow{BC}$=2$\overrightarrow{CD}$.
(Ⅰ)求线段AD的长;
(Ⅱ)求∠DAB的大小.

查看答案和解析>>

同步练习册答案